Welcome to Group Actions on Curves project

Group Actions on Algebraic Curves GAAC

There is a variety of groups that can act on a Riemann surface/algebraic curve over \(\mathbb{C}\); the automorphism group, the mapping class group (here we might allow punctures) and if the curve is defined over \(\bar{\mathbb{Q}}\) the absolute Galois group \(\mathrm{Gal}(\bar{\mathbb{Q}}/\mathbb{Q})\) is also acting on the curve. Understanding the above groups is a difficult problem and these actions provide information on both the curve and the group itself. For all the groups mentioned above, the action can often be understood in terms of linear representations, by allowing the group to act on vector spaces and modules related to the curve itself, as the (co)homology groups and section of holomorphic differentials.

Surveys on Automorphisms of Curves

Greece 2.0 Basic Research Financing Action (Horizontal support of all Sciences) Sub-action 2 Funding Projects in Leading-Edge Sectors.

Mathematics Department of the University of Athens.

News

25. April 2025

Δημοσίευση ιστοσελίδας του προγράμματος.

23. May 2025

Ομιλίες από τους Αλέξης Τερεζάκης, Διονυσία Στεργιοπούλου στο 10 Ελληνικό συνέδριο Άλγεβρας και Θεωρίας Αριθμών.

... see all News

Το έργο υλοποιείται στο πλαίσιο του Εθνικού Σχεδίου Ανάκαμψης και Ανθεκτικότητας «Ελλάδα 2.0», με τη χρηματοδότηση της Ευρωπαϊκής Ένωσης – NextGenerationEU. Φορέας Υλοποίησης: ΕΛ.ΙΔ.Ε.Κ. This project is carried out within the framework of the National Recovery and Resilience Plan Greece 2.0, funded by the European Union – NextGenerationEU (Implementation body: HFRI). https://greece20.gov.gr