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Introduction
Mathematicians have been studying descent of algebraic varieties for a long time. This journey began with Weil’s work [15], Grothendieck generalized it in [8] using fibered categories and finally Mumford’s Geometric Invariant Theory [11] gave it a huge
boost which partly led to the development of the theory of stacks. Following the definition of G-linearizations of invertible sheaves in [11] (for this work G is an algebraic group), there is a simplified version for finite groups which yields the definition of
equivariant objects of a category with a G-action (Definition 3, see also [4] for a topological group analogue). Equivariant categories have their roots in Grothendieck’s seminal Tôhoku paper [7] where he studied the category of G-equivariant sheaves of a
topological space. Later Mumford in [12] discovered an equivalence between the equivariant category of coherent sheaves and the quotient variety (see Example 4 below). Since then, equivariant categories of sheaves on a topological space have been studied
as a non-commutative categorical quotient for which the exploration of geometric properties and structure is very appealing (see [3] and [6]). The theory of equivariant (derived) categories is still being developed and is very relevant to many mathematical fields
such as algebraic geometry, representation theory, descent theory and the Langlands program. [1], [14].

Aim
Our aim is to take advantage of the equivariant category theory to provide a different point of view for the descent of algebraic varieties, especially for the Galois descent in the spirit of Weil’s work [15] and to bridge together the two well-known theories which
seem to be deeply related. To achieve this we need to understand and define a suitable Galois action on the category of coherent sheaves of an algebraic variety and show that the quotient variety is Weil’s descent variety.

Ingredient 1 - Galois Descent for Algebraic Varieties
Basic Idea. Let K be a field of positive characteristic and Ks a fixed separable closure. Then Gal(Ks, K) acts on polynomials
defined over Ks by permuting the coefficients and thus naturally yields an action on algebraic varieties over Ks.

Let p : X → Spec(Ks) be a Ks-scheme. For every σ ∈ Gal(Ks, K) the ring
homomorphism σ : Ks → Ks (contravariantly) corresponds to a morphism
of schemes σ̃ : Spec(Ks) → Spec(Ks). Then we can define the action of σ on
X as the fiber product σX := X ×σ̃ Spec(Ks) with π2 :

σX → Spec(Ks).

Note that every variety is defined over a field L which is a finite extension K,
i.e. the ideal I(X) can be generated by a finite collection of L-polynomials.
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Definition 1. Let L be a field such that K ⊂ L ⊂ Ks and assume that X is defined over L. We say that X is definable
over K with respect to the Galois extension L/K if there is an algebraic variety Y0 defined over K and an isomorphism
R : X → Y0×Spec(K) Spec(L) defined over L. The smallest field L such that X is definable over K is called the field of definition.

Assume X defined over L and definable over K with isomor-
phism R : X → Y over L, where Y := Y0×Spec(K) Spec(L). Then
there are isomorphisms σR : σY −→ σX such that the family of
isomorphisms

{fσ = (σR)−1 ◦ (IdY × σ) ◦R : X → σX}σ∈Gal(L/K)

satisfies the condition

fστ =
σf τ ◦ fσ ∀σ, τ ∈ Gal(L/K)

Such a family {fσ}σ∈Gal(L/K) is called a Galois descent datum of
X with respect to L/K.

Diagrammatically we have the following:
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Definable over K ⇒ Admits Galois descent datum

The inverse also holds:

Weil’s Descent Theorem. Consider the Galois extension L/K, where K ⊂ L ⊂ Ks.

1. If X admits a Galois descent datum {fσ}σ∈Gal(L/K) with respect to L/K, then there exists an algebraic variety Y defined over
K and an isomorphism R : X → Y defined over L, such that R = σR ◦ fσ for every σ ∈ Gal(L/K).

2. If there is another variety Ŷ defined over K and an isomorphism R̂ : X → Ŷ , defined over L such that R̂ = σR̂ ◦ fσ for all
σ ∈ Gal(L/K), then there exist an isomorphism J : Y → Ŷ , defined over K such that R̂ = J ◦R.

Ingredient 2 - Categories
Category theory was developed a lot by Grothendieck in order to provide a unified language and a framework for his theory re-
garding sheaves of schemes, or generally of topological spaces. Since then, mathematicians have found that categories are great
invariants of schemes and have even reconstructed schemes using suitable categories. Namely, let X be a smooth projective
variety, then the following categories reconstruct X as a ringed space:

• Coh(X), originally by Gabriel for Noetherian schemes, for quasi-separated by Rosenberg, general case by Calabrese, Pirisi

• Db(Coh(X)) when ωX is (anti-)ample, by Bondal & Orlov [5]

• Db(Coh(X)) with its monoidal structure, by Balmer [2]

Equivariant Categories
Definition 2. Let G be a finite group and A an additive category. A group action of G on A consists of the following data:

(i) ∀g ∈ G an auto-equivalence g : A → A,

(ii) a family of natural isomorphisms θg,h : g ◦ h
≃−→ (gh)

(iii) ∀g, h, k commutativity of:

g ◦ h ◦ k g ◦ (hk)

(gh) ◦ k (ghk)

Definition 3. Given the data of a group action on an additive category A, the equivariant category AG has:

Objects: (E, ϕ) where E ∈ Ob(A) and {ϕg : E
≃−→ gE}g∈G

is a family of isomorphisms called the linearization of E,
satisfying the following commutative diagram:

E gE ghE (gh)E
ϕg

ϕgh

gϕh θg,h

&

Morphisms: f : (E, ϕ) → (E ′, ϕ′) are moprhisms of A
making the following diagram commute for all g ∈ G:

E E ′

gE gE ′

f

ϕg ϕ′g

gf

Note that a G-action on an abelian category A naturally induces a group action on its derived category Db(A) and the equiv-
ariant category Db(A)G is canonically triangulated as long as |G| is invertible in A (each f ∈ HomA is uniquely divisible by |G|).
Moreover, AG is also abelian and it turns out that we have an equivalence of triangulated categories:

Db(AG) ≃ Db(A)G

Example 4. Let G ⊂ Aut(X) be a finite subgroup. Then every G acts on Coh(X) by pushforwards g∗ along each automorphism
g ∈ G. The quotient variety X/G exists if each G-orbit is contained in some affine open [9][Exposé V, Proposition 1.8] and if
the action is free then CohG(X) ≃ Coh(X/G) by Mumford [12, Chapter II, Paragraph 7].

In the level of derived categories, we have triangle equivalences Db(Coh(X))G ≃ Db(CohG(X)) ≃ Db(Coh(X/G)).

Combining the Ingredients - Equivalence of Categories with Descent Flavors
• K-Var := category of K-varieties

• L-VarK := category of L-varieties definable over K

(⋆) L-VarGal(L/K) ≃ L-VarK ≃ K-Var

Explanation of the equivalences of (⋆)
We have that Gal(L/K) acts on the category L-Var and its equivariant category L-VarGal(L/K) consists of pairs (X, f ) where the linearization {fσ}σ∈Gal(L/K) is in fact a Galois descent datum.
The equivalence of categories L-VarGal(L/K) ≃ L-VarK is obtained by the observation that every L-variety is definable over K if and only if admits Galois descent datum.
The functor K-Var → L-VarK is given by Y0 7→ (Y0 × Spec(L), {Id× σ}σ∈Gal(L/K)) and its quasi-inverse is given by Weil’s Descent Theorem.

Galois Actions on Categories of Sheaves
Let L/K be a finite Galois field extension and consider a L-variety X. We would like to define a Gal(L/K)-action on X such that we obtain the quotient X/Gal(L/K) = Y where Y is defined over K. One way to achieve this is by showing that there is an
equivalence of categories Coh(X)Gal(L/K) ≃ Coh(Y ) or even Db(X)Gal(L/K) ≃ Db(Y ) and then using some reconstruction theorem.

Our Attempt - Main Idea
Each σ ∈ Gal(L/K) induces a homeomorphism σ̂ : σX → X (it is the projection π1 as described above). Indeed if U is a
complement of a closed subscheme V then σ̂(U) =σX \σV is open. Assume that there exists a descent datum {fσ}σ∈Gal(L/K).
Proposition 5. There exists a natural Gal(L/K)-action on X by homeomorphisms:

X −→ X

P 7−→ σ̂fσ(P )

Given an open morphism of schemes µ : X → Y and a sheaf F of Y we can easily define the inverse image sheaf µ−1F of X
and the OX-module µ∗F as follows. Given an open U ⊂ X we define:

µ−1F(U) = F(µ(U)) & µ∗F(U) = µ−1F(U)⊗µ−1OY (U) OX(U)

Key Point: In this construction the definition of a morphism of schemes (being ringed spaces) provides us with a ring ho-
momorphism µ−1OY (U) → OX(U) which allows us the computation of the tensor product, see [10, II.5]. Indeed, for any
continuous function µ : X → Y we know that µ−1 is a left adjoint of µ∗, that is there is a natural map µ−1µ∗OX → OX, and
moreover since the map µ is a morphism of schemes we have µ∗OX = OY , [10, Exer. II.1.18].

We will now consider the homeomorphism σ̂ : σX → X and for a sheaf F of σX and an open U ⊂ X we define

σ̂∗(F)(U) = σ̂−1(F)(U)⊗σ̂−1OX(U) OσX(U)

where the map σ̃−1OX(U) = OX(σU) → OσX(U) is given by f ∈ σ̃−1OX(U) = OX(σ(U)) 7→ σ−1
f ∈ F(U).

Proposition 6. Let F be a sheaf of OX-modules on X, the map F 7→ (σ̃fσ)
∗F ≃ f ∗

σ σ̃
∗F is a Gal(L/K)-action on the category of

OX-modules of X.

To Do List:
• Construct an equivalence of categories Coh(X)Gal(L/K) ≃ Coh(Y ) or Db(X)Gal(L/K) ≃ Db(Y ).

• Figure out which reconstruction theorem suits our setup.

• If needed, modify the definition of the group action to resolve any issues.
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New Research!
A lot of the theory on equivariant categories is also showcased in our recent article (along with new results) in a joint work with
A. Kontogeorgis and C. Psaroudakis: “ Equivariant Recollements and Singular Equivalences ” - arXiv:2504.07620
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