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Motivation



Trace & Norm in pure mathematics

Abstract

Traces and determinants are fundamental tools of linear
algebra with ubiquitous influence throughout several branches
of modern algebra...

List a few occurrences of traces/transfers and norms in pure
mathematics.
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Trace & Norm in field theory

Let L/K be an an extension of number fields. For each α ∈ L let

mα : L ! L, β 7! αβ,

and let Mα be the matrix of mα with respect to some K -basis of L.

Definition

Tr : L ! K , α 7! Trace(Mα), Nm : L ! L, α 7! Det(Mα).

Applications: Rings of integers, discriminants, ramification theory,
class field theory, Galois/Tate cohomology and many more.

Equivalently, if σ1, . . . , σn are the K -embeddings of L into C, then

Tr(α) =
n∑

i=1

σi (α), Nm(α) =
n∏

i=1

σi (α).

This definition extends to finite separable field extensions, and to
finite free commutative ring extensions R ! S .



Trace & Norm for finite groups

Let k be a field, G a finite group, H a subgroup, M a kG -module.

Definition

Define Tr : MH ! MG , Nm : MH ! MG as

Tr(m) =
∑

g∈[G/H]

gm, Nm(m) =
∏

g∈[G/H]

gm.

This can be further extended to group cohomology, giving maps

Tr :Hn(H,M) ! Hn(G ,M), Nm :Hn(H,M) ! Hn(G ,M).

Applications: Detection of (relative) projectivity, invariant theory,
spectral sequences, finite generation of the cohomology ring.



Generalizations?

Generalize the object acted upon

1 Purely inseparable field extensions.

2 Commutative rings with trivial automorphism groups.

3 Non-Galois covers of schemes.

Generalize the acting object

1 Actions of Lie algebras.

2 Modules for arbitrary finite dimensional algebras.

3 Hochschild cohomology.

Generalize the base object

1 Actions on modules over a general commutative ring.

2 Equivariant quasicoherent sheaves on schemes.



Finite group schemes



Finite group schemes

A finite group scheme G over k can be defined as:

Definition

1 A group object in the category of affine k-schemes.

2 The prime spectrum of a finite dimensional commutative Hopf
algebra.

3 The prime spectrum of the k-dual of a finite dimensional
cocommutative Hopf algebra.

4 The finite scheme that represents a group-valued functor.



Group objects

Let C be a locally small category with finite products.1

Definition

A group object G of C is one that comes equipped with morphisms

m : G × G ! G , e : ∗ ! G and i : G ! G

satisfying the usual group axioms (associativity, unitality, inverse).

Examples:

The group objects of (Sets) are groups.

The group objects in (Smooth Manifolds) are Lie groups.

The group objects in (AffSch) are finite group schemes.

1Sets, Grps, Top, CRngs, AffSch...



Hopf algebras

Definition

A Hopf algebra is a k-algebra H equipped with homomorphisms

∆ : H ! H ⊗ H, ϵ : H ! k, S : H ! H

called comultiplication, counit and antipode repectively, satisfying

(∆⊗ id) ◦∆ = (id⊗∆) ◦∆, (coassociativity)

(ϵ⊗ id) ◦∆ = id = (id⊗ ϵ) ◦∆, (counitality)



Spec(Hopf algebra)=group object

Let H be a Hopf algebra with comult. ∆ : H ! H ⊗ H, satisfying

(∆⊗ id) ◦∆ = (id⊗∆) ◦∆.

Applying the Spec functor and setting G = Spec(H)

m = Spec(∆) : G × G ! G , m ◦ (m × id) = m ◦ (id×m)

Applying vector space duality and setting H∗ = Homk(H, k)

µ = m∗ : H∗ ⊗ H∗ ! H∗, µ ◦ (µ⊗ id) = µ ◦ (id⊗ µ)

One may recover any of H,H∗, Spec(H) from any of the other two.

Conclusion

G is a group object ⇔ k[G ] is Hopf ⇔ kG = k[G ]∗ is Hopf.



Modules

It is more intuitive (?) to think of G -modules as modules over the
finite dimensional k-algebra kG .

Properties: Frobenius, cocommutative, Hopf, self-injective, tensor
category, generally wild representation type.

Non-properties: Symmetric, commutative, hereditary.

Standard examples: Group algebra of a finite group, universal
enveloping algebra of a finite dimensional p-restricted Lie algebra.

If H is a closed subgroup scheme of G then kH is a subalgebra of
kG , and the latter is free over the former.



Trace/Transfer



Restriction, Induction, Coinduction

Let H be a closed subgroup scheme of a finite group scheme G
over a field k. The inclusion f : kH ↪! kG gives rise to functors

(H-modules) (G -modules)

f!=IndGH

f∗=CoindGH

f ∗=ResGH

ResGH(−) is the restriction of scalars.

IndGH(−) = −⊗kH kG is the extension of scalars or induction.

CoindGH(−) = HomH(kG ,−) is the coinduction.



Units and Counits

By Frobenius reciprocity, these functors form an adjoint triple:

f! ⊣ f ∗ ⊣ f∗ or equivalently IndGH ⊣ ResGH ⊣ CoindGH .

Each adjunction is uniquely determined a pair of natural
transformations (η, ϵ) called the unit/counit pair of the adjunction.

If M is a G -module and N is an H-module,

ηL : 1H-mod ! ResGHInd
G
H , ϵL : IndGHRes

G
H ! 1G -mod

ηR : 1G -mod ! CoindGHRes
G
H , ϵR : ResGHCoind

G
H ! 1H-mod.



The case of finite groups

Let H be a subgroup of a finite group G , and let f : kH ↪! kG .

Theorem (The Nakayama isomorphism)

There exists a natural isomorphism CoindGH(−) ∼= IndGH(−),

HomkH(kG ,M) ! M ⊗kH kG , ϕ 7!
∑

g∈[G/H]

ϕ(g)⊗ g−1.

Thus induction and restriction are biadjoint, IndGH ⊣ ResGH ⊣ IndGH .

This is controlled by the invariants of the left regular representation

(kG )G = k ·
∑
g∈G

g = k.



Transfer for finite groups revisited

The unit ηR of ResGH ⊣ IndGH and the counit ϵL of IndGH ⊣ ResGH are

ϵL(M) : kG ⊗kH M ! M, g ⊗kH m 7! gm,

ηR(M) : M ! kG ⊗kH M, m 7!
∑

g∈[G/H]

g ⊗ g−1m,

Taking m ∈ MH = HomH(k,M) one can check that

k
ηR(M)
−! kG ⊗kH k

IndGH(m)
−! kG ⊗kH M

ϵL(M)
−! M

defines an element of HomG (k,M) = MG given by∑
g∈[G/H]

gm = Tr(m).



The Wirthmüller isomorphism

Let G be a finite group scheme, H a closed subgroup scheme.

Definition

The modular function δG of G is the one-dimensional G -module
(kG )G . One says that G is unimodular if δG is trivial.

Theorem (Wirthmüller isomorphism)

There exists a natural isomorphism of functors

WH,G : CoindGH(−)
∼=−! IndGH(−⊗ µ−1

H,G )

where µH,G is the H-module RG
H(δG )⊗ (δH)

∗ = RG
H(δG )(δH)

−1.

Thus IndGH ⊣ ResGH ⊣ IndGH(−⊗ µ−1
H,G ), and

ηR : 1G -mod ! IndGH(Res
G
H(−⊗µ−1

H,G )), ϵL : IndGHRes
G
H ! 1G -mod.



Transfer for finite group schemes

Definition (K.-Symonds 2023)

Let M be a G -module. The relative transfer from H to G is

TrGH : (µH,G ⊗M)H ! MG , f 7! ϵL(M) ◦ IndGH(f ) ◦ ηR(k).

That is, any f ∈ (µH,G ⊗M)H = HomH(µ
−1
H,G ,M) gives rise to an

element of HomG (k,M) = MG via

k M

IndGH(µ
−1
H,G ) IndGH(M).

ηR(k)

TrGH(f )

IndGH(f )

ϵL(M)



Transitivity, Base change, Functoriality

Let M,M ′ be G -modules. The above can be generalized to define

TrGH : HomH(M
′ ⊗ µ−1

H,G ,M) ! HomG (M
′,M),

TrGH : ExtH(M
′ ⊗ µ−1

H,G ,M) ! ExtG (M
′,M),

a special case of which is a transfer for group scheme cohomology.

Proposition (K.Symonds 2024)

Let K ≤ H ≤ G , L/k a field extension, and f , g , h Ext-classes.

1 TrGH ◦ TrHK = TrGK .

2 TrGH ⊗ L = TrGL
HL,

.

3 h ◦ TrGH(f ) ◦ g = TrGH(h ◦ f ◦ (g ⊗ 1µ−1
H,G

)).



Transfer detects (relative) projectivity

Proposition (K.-Symonds 2024)

If G is unipotent then TrGH ◦ resGH = 0.

Proposition (Higman’s criterion, K.-Symonds 2023)

The following conditions on a G -module M are equivalent.

1 M is projective relative to a closed subgroup scheme H.

2 M is isomorphic to a direct summand of IndGH(M).

3 idM is in the image of the transfer map TrGH .

Corollary (K.-Symonds 2023)

If char(k) ∤ |G : H|, every G -module is projective relative to H.



Mackey Theory

Recall that if H,K ≤ G are finite groups and M is a G -module
then one has the following Mackey’s double coset formulas

ResGHInd
G
KM

∼=
⊕

g∈[H\G/K ]

IndHH∩gKRes
gK
H∩gK (gM)

ResGH ◦ TrGK =
∑

g∈[H\G/K ]

TrHH∩gK ◦ c∗g ◦ ResKHg∩K

Theorem (Feshbach 1996, K.-Symonds 2024)

Mackey’s double coset formula holds if K ,H ≤ G are unimodular
finite group schemes over an algebraically closed field.



Norm



Infinitesimal group schemes

Let k be a field of characteristic p > 3. If L/k is a purely
inseparable extension then L has no non-trival k-automorphisms.

A finite group scheme G over k is called infinitesimal if its
coordinate ring k[G ] is a local ring. Over a perfect field

G = Spec
(
k[X1, . . . ,Xn]/(X

pa1
1 , . . . ,X pan

n )
)

Theorem (Childs, 1976)

For any purely inseparable finite extension L/k, there exists an
infinitesimal group scheme G acting on L such that LG = k.

Intuitively, infinitesimal group schemes are as far away as possible
from finite groups, and close as possible to Lie algebras.



Étale group schemes

At the other end one has so-called étale (finite) group schemes
whose coordinate rings are (finite) étale/separable k-algebras,

Spec (L1 × · · · × Ln) , with each Li/k finite separable.

If all Li = k, one recovers the coordinate ring of a finite group.

The base change G ét
ksep of a finite étale group scheme to a separable

closure ksep of k can be indentified with a finite group.

Observation (K.-Symonds, 2024)

1 If G is a finite étale group scheme acting on a field L, then
L/LG is finite separable.

2 If L/K is a finite Galois extension, then Gksep = Gal(L/K ).



Cartier’s structure theorem

As every finite extension can be built from a separable and a purely
inseparable field extension, one has that every finite group scheme
G can be built from an étale and an infinitesimal group scheme.

Every finite group scheme G has a largest étale quotient, denoted
G ét. The kernel G 0 of the projection map G ↠ G ét is an
infinitesimal group scheme.

Theorem (Cartier’s Theorem)

Every finite group scheme G over a perfect field k can be written
as a semi-direct product G = G 0 ⋊ G ét.



The definition of the norm

A G -algebra S is a commutative k-algebra equipped with a
G -module structure compatible with its ring structure.

Definition (K.-Symonds 2024)

Let S be a G -algebra. The relative norm from H to G is

NmG
H : SH ! SG , s 7!

∏
g∈[G ét/H ét]

gs |G
0:H0|.



Properties of the norm

Proposition (K.-Symonds 2024)

1 NmG
H(s) = s |G :H| for all s ∈ SG .

2 NmG
H ◦NmH

K = NmG
K for any K ≤ H ≤ G .

3 NmG
H(rs) = NmG

H(r)Nm
G
H(s), for all r , s ∈ SH .

4 NmG
H (f (s)) = f

(
NmG

H(s)
)
for all s ∈ SH and all G -algebra

homomorphisms f : S ! R.

Theorem (K.-Symonds 2024)

Let L be a field which is a G -algebra. Then [L : LG ] | |G | and

NmG
{1}(α) = NL/LG (α)

|G |
[L:LG ] , ∀ α ∈ L

where NL/LG : L ! LG is the classic field norm.



Thank you for your attention!

What should I write in the last slide of a pure math beamer
presentation to thank the audience in a witty manner?

https://chatgpt.com/

