
ON THE ACTION OF THE SYMMETRIC GROUP ON THE FREE LANKE
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Abstract. A LAnKe (also known as a Filippov algebra or a Lie algebra of the n-th kind) is a
vector space equipped with a skew-symmetric n-linear form that satisfies the generalized Jacobi
identity. Friedmann, Hanlon, Stanley and Wachs have shown that the symmetric group acts on
the multilinear part of the free LAnKe on 2n− 1 generators as an irreducible representation. They
announced that the multilinear component on 3n− 2 generators decomposes as a direct sum of two
irreducible symmetric group representations and a proof was given recently in a subsequent paper
by Friedmann, Hanlon and Wachs. In the present paper we provide a proof of the later statement.
The two proofs are substantially different.

1. Introduction

Throughout this paper we work over a field K of characteristic zero.
Since the mid 1980’s various n-ary generalizations of Lie algebras have been introduced and

studied. We refer to the Introduction of the paper by Friedmann, Hanlon, Stanley and Wachs
[6] for a discussion of such generalizations, historical background and ties with various areas of
mathematics and physics. Also there is an extensive review by de Azcárraga and Izquierdo [3].
Among the above generalizations are the Filippov algebras [4], which are also called LAnKes [6].

Definition 1.1 ([6, Definition 1.2]). A Lie algebra of the n-th kind (LAnKe or Filippov algebra)
is a K-vector space L equipped with an n-linear bracket [−,−, . . . ,−] : Ln → L such that for all
x1, . . . , xn, y1, . . . , yn−1 ∈ L,

(1) [x1, x2, . . . , xn] = sgn(σ)[xσ(1), xσ(2), . . . , xσ(n)] for every σ ∈ Sn, and
(2) the following generalized Jacobi identity holds

[[x1, x2, . . . , xn], y1, . . . , yn−1](1.1)

=

n∑
i=1

[x1, x2, . . . , xi−1, [xi, y1, . . . , yn−1], xi+1, . . . , xn].

Homomorphisms between LAnKes are defined in the usual way. Following [6, Definition 2.1], the
free LAnKe on a set X is a LAnKe L together with a map i : X → L such that if f : X → L′ is
a map, where L′ is a LAnKe, then there is a unique LAnKe homomorphism F : L → L′ such that
f = F ◦ i. By a standard argument, free LAnKes on X are isomorphic. It is clear that the free
LAnKe for n = 2 is the free Lie algebra.

In [6], Friedmann, Hanlon, Stanley and Wachs initiated the study of the action of the symmetric
group Sm on the multilinear component of the free LAnKe. To be precise, the multilinear compo-
nent Lien(m) of the free LAnKe on [m] := {1, . . . ,m} is spanned by the bracketed words on [m] in
which each i appears exactly once. It follows that each such bracketed word has the same number
of brackets, say k, and m = (n− 1)k+1. Consider the action of Sm on Lien(m) given by replacing
i by σ(i) in each bracketed word. Let us denote the corresponding representation of Sm by ρn,k.
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For a partition λ of m, let Sλ be the corresponding Specht module of the symmetric group
Sm. As λ ranges over all partitions of m, the modules Sλ form a complete set of inequivalent
representations of Sm. It was shown by Friedmann, Hanlon, Stanley and Wachs in [6, Theorem

1.3] that the representation ρn,2 of S2n−1 is isomorphic to the Specht module S(2n−1,1) if n ≥ 2.
The following result was announced in [6] and [5]. A proof appeared in the recent paper [8].

Theorem 1.2 ([5, Theorem 3], [6, p.4], [8, Theorem 1.3]). The representation ρn,3 of S3n−2 is

isomorphic to the direct sum S(3n−2,2,12) ⊕ S(3n−1,1) for every n ≥ 2.

The decomposition of ρn,k into irreducibles has been obtained for k = 4 recently in [8] and [13]
(the two proofs are substantially different). The decomposition of ρn,k remains open for k ≥ 5.

The purpose of this paper is to prove Theorem 1.2. We approach the problem within the
framework of representations of the general linear group G = GLN (K). Using ideas from [11],
which in turn were based on ideas of Brauner, Friedmann, Hanlon, Stanley and Wachs in [2, 6, 7],
we define and study a particular G-equivariant map

(1.2) Λ(λ)⊕ Λ(λ)⊕ Λ(ν)
Ω(γ1)+Ω(γ2)+Ω(γ3)−−−−−−−−−−−−→ Λ(λ).

where Λ(λ) = ΛnV ⊗Λn−1V ⊗Λn−1V and Λ(ν) = ΛnV ⊗ΛnV ⊗Λn−2V are the tensor products of
the indicated exterior powers of the natural G-module of column vectors and N ≥ 3n−2. This map
has the property that when we apply the Schur functor, we obtain a presentation of the multilinear
component Lien(m) of the free LAnKe, where m = 3n − 2. We analyze the effect of the map on
irreducible summands of Λ(λ) using combinatorics of semistandard tableaux.

In Section 2 we establish notation and gather some recollections to be used in the sequel. In
Section 3 we analyze the map

Λ(λ)⊕ Λ(λ)
Ω(γ1)+Ω(γ2)−−−−−−−−→ Λ(λ)

and determine the irreducible decomposition of its cokernel (see Theorem 3.4). In Section 4 we
extend the analysis to the map (1.2). The main result of this paper for G describes the irreducible
decomposition of the cokernel of (1.2) (see Theorem 4.5). In Section 5 we determine a presentation
of Lien(m) (see Lemma 5.10). Using this and the Schur functor we show that Theorem 1.2 follows
from Theorem 4.5.

2. Preliminaries

The purpose of this section is to establish notation ans discuss results that will be used in the
sequel. Our main references here are the books by Fulton [9] and Weyman [14] and the paper [1]
by Akin and Buchsbaum.

2.1. Divided power algebra and exterior algebra. Let G = GLN (K). We denote by V = KN

be the natural G-module consisting of column vectors.
By D =

⊕
i≥0Di we denote the divided power algebra of V . We will recall some definitions and

facts concerning this algebra. For more details we refer to [14, Section 1.1].
We recall that D is defined as the graded dual of the symmetric algebra S(V ∗) of V ∗, where V ∗

is the dual of V . So by definition we have

Di = (Si(V
∗))∗.

Since the characteristic of K is zero, D is naturally isomorphic to the symmetric algebra SV of
V . However, the computations to be made in Sections 3 and 4.1 seem less involved if one deals
with Weyl modules in place of Schur modules. For this reason we work with the divided power
algebra and Weyl modules.

2



If v ∈ V and i is a nonnegative integer, we have the ith divided power v(i) ∈ Di of v. In
particular,

v(0) = 1 and v(1) = v

for all v ∈ V . We recall that if i, j are nonnegative integers, then the product v(i)v(j) of v(i) and
v(j) in D is given by

v(i)v(j) =
(
i+j
j

)
v(i+j),

where
(
i+j
j

)
is the indicated binomial coefficient. These relations will be used many times in Sections

3 and 4.1.
If {e1, . . . , eN} is a basis of the vector space V , then a basis of the vector space Di is the set

{e(α1)
1 · · · e(αN )

N : α1 + · · ·+ αN = i}.

We recall that D has a graded Hopf algebra structure. Let

∆ : D → D ⊗D

be the comultiplication map of D. Explicitly, for a homogeneous element x = v
(α1)
1 · · · v(αt)

t ∈ Da,
where vi ∈ V , we have

∆(x) =
∑

0≤βi≤αi

v
(β1)
1 · · · v(βt)

t ⊗ v
(α1−β1)
1 · · · v(αt−βt)

t .

For 0 ≤ b ≤ a we may restrict the above sum to those βi such that β1 + · · · + βt = b. This yields
the following component of the comultiplication map

Da → Db ⊗Da−b,

x 7→
∑

0≤βi≤αi
β1+···+βt=b

v
(β1)
1 · · · v(βt)

t ⊗ v
(α1−β1)
1 · · · v(αt−βt)

t ,

which we will again denote simply by ∆ : Da → Db⊗Da−b in order to avoid cumbersome notation.
By coassociativity of the comultiplication map ∆ : D → D ⊗D, we have a well defined twofold

comultiplication map D → D⊗D⊗D. The component Da → Da1 ⊗Da2 ⊗Da3 of this map, where
ai are nonnegative integers such that a = a2 + a2 + a3, is given as follows,

Da → Da1 ⊗Da2 ⊗Da3 ,

x 7→
∑

0≤βi+γi≤αi
β1+···+βt=a2
γ1+···γt=a1

v
(γ1)
1 · · · v(γt)t ⊗ v

(β1)
1 · · · v(βt)

t ⊗ v
(α1−β1−γ1)
1 · · · v(αt−βt−γt)

t ,

where x = v
(α1)
1 · · · v(αt)

t ∈ Da.
By Λ =

⊕
i≥0 Λ

i we denote the exterior algebra of V . We recall that Λ has a graded Hopf algebra

structure. If u, v ∈ Λ, we denote their product in Λ by uv. If {e1, . . . , eN} is a basis of the vector
space V , then a basis of the vector space Λi is the set

{eα1eα2 · · · eαi : 1 ≤ α1 < · · · < αi ≤ N}.

We denote by

∆ : Λ → Λ⊗ Λ

the comultiplication map of Λ. Explicitly, for a homogeneous element x = v1v2 · · · va ∈ Λa, where
vi ∈ V , we have

∆(x) =
∑

0≤s≤a

∑
σ

vσ(1) . . . vσ(s) ⊗ vσ(s+1) . . . vσ(a),
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where the second sum is over all permutations σ of {1, . . . , a} such that σ(1) < · · · < σ(s) and
σ(s+ 1) < · · · < σ(a).

For 0 ≤ b ≤ a we have the following component of the comultiplication map

Λa → Λb ⊗ Λa−b,

x 7→
∑
σ

vσ(1) . . . vσ(b) ⊗ vσ(s+1) . . . vσ(a),

where the sum is over all permutations σ of {1, . . . , a} such that σ(1) < · · · < σ(s) and σ(s+ 1) <
· · · < σ(a). We will denote this map simply by ∆ : Λa → Λb ⊗ Λa−b.

We have used the same symbol ∆ for the comultiplication maps in the algebra D and Λ. In the
sequel it will be clear which algebra is considered each time. If there is a need of distinction, we
will write ∆D and ∆Λ.

2.2. Partitions, Weyl modules and Schur modules. For a positive integer r, let Λ(N, r) be
the set of sequences α = (α1, . . . , αN ) of length N of nonnegative integers that α1+· · ·+αN = r and
let Λ+(N, r) be the subset of Λ(N, r) consisting of partitions, that is sequences µ = (µ1, . . . , µN )
such that µ1 ≥ µ2 ≥ · · · ≥ µN . The length ℓ(µ) of a partition µ = (µ1, . . . , µN ) is the maximum s
such that µs ̸= 0.

For α = (α1, . . . , αN ) ∈ Λ(N, r), let

D(α) := D(α1, . . . , αN )

be the tensor product Dα1 ⊗ · · · ⊗DαN over K. Likewise, for exterior powers let

Λ(α) := Λ(α1, . . . , αN )

be the tensor product Λα1 ⊗ · · · ⊗ ΛαN over K.
For µ ∈ Λ+(N, r), we denote by Kµ the corresponding Weyl module for G and by Lµ the

corresponding Schur module for G defined in [14, Section 2.1]. For example, when µ = (a) consists
of one part, then K(a) = Da and L(a) = Λa. If µ = (1a), then K(a) = Λa and L(a) = Sa, where the
later module is the degree a symmetric power of the natural module V .

Since the characteristic of K is zero, for every µ ∈ Λ+(N, r) the G-modules Kµ and Lµ′ are
isomorphic irreducible modules, where µ′ denotes the conjugate partition of µ, see [14, Section 2.2].

It is a classical fact that the multiplicity of Kµ in D(µ) is equal to 1, see [9, Corollary 2(a),
Section 8.3]. We denote by

πµ : D(µ) → Kµ

the natural projection (which is unique up to a nonzero scalar multiple).

2.3. Tableaux and semistandard basis. Let us recall an important combinatorial property of
Kµ.

We fix the order e1 < e2 < · · · < eN on the natural basis {e1, ..., eN} of V . In the sequel
we will denote ei by its subscript i. If µ = (µ1, ..., µN ) ∈ Λ+(N, r), a tableau of shape µ is a
filling of the diagram of µ with entries from {1, ..., N}. A tableau is called row semistandard if
the entries are weakly increasing across the rows from left to right. A row semistandard tableau
is called semistandard if the entries are strictly increasing down each column. We denote the
set of row semistandard tableaux (respectively, semistandard tableaux) of shape µ by RSST(µ)
(respectively, SST(µ)). The weight of a tableau S is the tuple α = (α1, ..., αN ), where αi is the
number of appearances of the entry i in S. The set consisting of the semistandard (respectively,
row semistandard) tableaux of shape µ and weight α will be denoted by SSTα(µ) (respectively,
RSSTα(µ)). For example, the following tableau of shape µ = (5, 4, 2)

1 1 1 1 2
2 2 4 4
3 4
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is semistandard and has weight α = (4, 3, 1, 3). We will use ‘exponential’ notation for row semis-
tandard tableaux.

If µ = (µ1, µ2, . . . , µN ) is a partition and S is a row semistandard tableau of shape µ,

S =

1(a11) · · ·N (a1N )

1(a21) · · ·N (a2N )

...
...

1(aN1) · · ·N (aNN )

,

where aij are nonnegative integers, let eS ∈ D(µ) be the element

eS := 1(a11) · · ·N (a1N ) ⊗ 1(a21) · · ·N (a2N ) ⊗ 1(aN1) · · ·N (aNN )

obtained by ‘reading the rows’ of S from left to right and top to bottom. We note that∑
j

aij = µi (i = 1, . . . , N) and
∑
i

aij = αj (j = 1, . . . N),

where α = (α1, . . . , αN ) is the weight of S.
A classical result here is the following, see [14, (2.1.15) Proposition].

Theorem 2.1. Let µ ∈ Λ+(N, r). Then there is a bijection between SST(µ), and a basis of the
K-vector space Kµ given by S 7→ πµ(e

S).

We refer to the elements of this basis of Kµ as semistandard basis elements.

2.4. Straightening row semistandard tableaux. Let µ be a partition and S ∈ RSST(µ). For
j ∈ {1, 2, . . . , ℓ(µ)− 1}, consider the tableau

S[j, j + 1]

consisting of rows j and j +1 of S. We have the partition (µj , µj+1) consisting of rows j and j +1
of µ and we have the corresponding Weyl module K(µj ,µj+1). From the last paragraph of the proof

of [14, (2.1.15) Proposition] we have the following result.

Lemma 2.2. Let µ be a partition and j ∈ {1, 2, . . . , ℓ(µ)− 1}. Let S ∈ RSST(µ) be a row standard
tableaux. If in K(µj ,µj+1) we have a linear combination

π(µj ,µj+1)(e
S[j,j+1]) =

∑
i

ciπ(µj ,µj+1)(e
S[j,j+1]i),

where ci ∈ K and S[j, j+1]i are row standard tableaux of shape (µj , µj+1), then in Kµ we have the
linear combination

πµ(e
S) =

∑
i

ciπµ(e
Si),

where Si is the tableau obtained from S by replacing rows j and j + 1 with S[j, j + 1]i.

Roughly speaking, the previous lemma allows us to obtain relations inKµ from relations involving
any pair of consecutive rows of a tableau S ∈ RSST(µ).

In the sequel we will need to express elements of Weyl modules as explicit linear combinations
of semistandard basis elements. To this end, we will apply many times the above lemma together
with the next lemma which concerns violations of semistandardness in the first column.

Lemma 2.3 ([12, Lemma 4.2]). Let ν = (ν1, ν2) be a partition of length two and let

S =
1(a1)2(a2) · · ·N (aN )

1(b1)2(b2) · · ·N (bN ) ∈ RSST(ν).

Then we have the following identities in Kν .
5



(1) If a1 + b1 > ν1, then πν(e
S) = 0.

(2) If a1 + b1 ≤ ν1, then

(2.1) πν(e
S) = (−1)b1

∑
k2,...,kn

(
b2+k2
b2

)
· · ·

(
bN+kN

bN

)
πν(e

S(k2,...,kN )),

where

S(k2, . . . , kN ) =
1(a1+a2)2(a2−k2) · · ·N (aN−kN )

2(b2+k2) · · ·N (bN+kN )

and the sum ranges over all nonnegative integers k2, . . . , kN such that k2 + · · · + kN = b1
and ks ≤ as for all s = 2, . . . , N .

We may think of the sum in the right hand side of eq. (2.1) as been taken over all ways of
replacing the b1 1’s in the second row of the tableaux S with k2 2’s, k3 3’s, . . . , kN N’s from the
first row of S, where k2 + k3 + · · ·+ kN = b1.

Even though our paper [12] concerns modular representations, the proof of the above lemma
given there is valid for any field in place of K (in fact for any commutative ring). In [12, Lemma
4.2] we used the notation ∆µ for the Weyl module Kν .

We refer to the first equality of part (2) of Lemma 2.3 as raising the 1’s from row 2 of S to the
row 1. If the number of rows of the tableau S ∈ RSST(µ) is greater than 2, then according to
Lemma 2.2 we may apply Lemma 2.3 to any pair (j, j+1) of consecutive rows of S to raise the 1’s
from row j + 1 of S to row j. By repeating this process a finite number of times, we may raise all
the 1’s to row 1. (If the total number of 1’s in S is strictly greater than the length of the first row
of S, then πµ(e

S) = 0 by the first part of Lemma 2.3.)
As an illustration of raising the 1’s, we consider the following example. Note that at the end of

this example we raise the 2’s from row 3 to row 2.

Example 2.4. Let µ = (4, 3, 2) and

S =
12(2)3
123
13

∈ RSST(µ).

We will express πµ(e
S) as a linear combination of semistandard basis elements of the Weyl module

Kµ using Lemma 2.3.
Let ν = (µ2, µ3) = (3, 2). Applying Lemma 2.3(2) for the tableau

S[2, 3] =
123
13

∈ RSST(ν)

we obtain
πν(123⊗ 13) = −πν(1(2)3⊗ 23)−

(
2
1

)
πν(1

(2)2⊗ 3(2))

and thus from Lemma 2.2 we get

(2.2) πµ(e
S) = πµ(12

(2)3⊗ 123⊗ 13) = −πµ(12(2)3⊗ 1(2)3⊗ 23)−
(
2
1

)
πµ(12

(2)3⊗ 1(2)2⊗ 3(2)).

Thus we have raised the 1’s from row 3 of S to row 2.
Next, in each summand of the right hand side of eq. (2.2), we raise the 1’s from row 2 to row 1.
Let ν = (µ1, µ2) = (4, 3). Consider the first summand of the right hand side of eq. (2.2).

Applying Lemma 2.3(2) for the tableau

12(2)3

1(2)3
∈ RSST(ν)

we obtain
πν(12

(2)3⊗ 1(2)3) = (−1)2
(
πν(1

(3)3⊗ 2(2)3) +
(
2
1

)
πν(1

(3)2⊗ 23(2))
)
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and thus from Lemma 2.2 we get

(2.3) πµ(12
(2)3⊗ 1(2)3⊗ 23) = (−1)2

(
πµ(1

(3)3⊗ 2(2)3⊗ 23) +
(
2
1

)
πµ(1

(3)2⊗ 23(2) ⊗ 23
)
.

Similarly, for the second summand of the right hand side of eq. (2.2) we get

(2.4) πµ(12
(2)3⊗ 1(2)2⊗ 3(2)) = (−1)2

((
3
1

)
πµ(1

(3)3⊗ 2(3) ⊗ 3(2)) +
(
2
1

)
πµ(1

(3)2⊗ 2(2)3⊗ 3(2))
)
.

Substituting eqs. (2.3) and (2.4) in eq. (2.2) we find

πµ(e
S) =− πµ(1

(3)3⊗ 2(2)3⊗ 23)− 2πµ(1
(3)2⊗ 23(2) ⊗ 23)(2.5)

− 6πµ(1
(3)3⊗ 2(3) ⊗ 3(2))− 4πµ(1

(3)2⊗ 2(2)3⊗ 3(2)).

We note that in each summand of the right hand side of eq. (2.5), all the 1’s are located in the
first row.

The third and fourth summands in the right hand side of eq. (2.5) are multiples of semistandard
basis elements of the Weyl module Kµ. However, the first and second summands in the right hand
side of eq. (2.5) are multiples of πµ(e

S1) and πµ(e
S2) respectively, where

S1 =
1(3)3

2(2)3
23

, S2 =
1(3)2

23(2)

23

and these tableaux are not semistandard because in both cases the 2 in the third row presents a
violation of semistandardness. We may apply Lemma 2.3(2) for the tableaux

S1[2, 3] =
2(2)3
23

and S2[2, 3] =
23(2)

23

to raise the 2 from row 3 of Si, i = 1, 2, to row 2. (In the notation of Lemma 2.3, the 1’s and 2’s
in the entries of the tableau are replaced by 2’s and 3’s respectively). Thus

πµ(e
S1) =− 2πµ(1

(3)3⊗ 2(3) ⊗ 3(2)),

πµ(e
S2) =− 2πµ(1

(3)3⊗ 2(2)3⊗ 3(2))

and the right hand sides are multiples of semistandard basis elements. Substituting in eq. (2.5) we
obtain πµ(e

s) as a linear combination of semistandard basis element of Kµ.

Remark 2.5. We remark that in general Lemma 2.3 is not enough to express any element of any
Weyl module Kµ as a linear combination of semistandard basis elements. However, it will suffice
for the particular cases studied in the present paper, as we will see in Sections 3 and 4.1.

2.5. Projections. Since the characteristic of K is zero, every finite dimensional polynomial repre-
sentation M of G is a direct sum of Weyl modules. The multiplicity of Kµ, where µ ∈ Λ+(N, r), as
a summand of M is equal to the dimension of the vector space HomG(M,Kµ). When M = D(α),
where α ∈ Λ(N, r), the dimension of HomG(D(α),Kµ), which is known as a Kostka number, is
equal to the cardinality of the set SSTα(µ). In the sequel, we will need to identify different copies
of Kµ in D(α). To this end we need an explicit basis of HomG(D(α),Kµ) which we describe next.

In what follows we will restrict our discussion to partitions that have at most three parts, since
only such partitions are needed in the sequel.

Suppose µ = (µ1, µ2, µ3) ∈ Λ+(3, r), α = (α1, α2, α3) ∈ Λ(3, r) and S is a row semistandard
tableau of shape µ and weight α

S =
1(a11)2(a12)3(a13)

1(a21)2(a22)3(a23)

1(a31)2(a32)3(a33).
7



This means that for the matrix A = (aij) the row sums are given by µ

ai1 + ai2 + ai3 = µi (i = 1, 2, 3)

and the column sums by α

a1j + a2j + a3j = αj (j = 1, 2, 3).

We refer to A as the matrix of the row semistandard S.

Definition 2.6. Suppose µ = (µ1, µ2, µ3) ∈ Λ+(3, r), α = (α1, α2, α3) ∈ Λ(3, r) and S is a row
semistandard tableau of shape µ and weight α. Let A = (αij) be the matrix of S.

(1) Define a map of G-modules

ϕS : D(α) → D(µ)

as the following composition

D(α1, α2, α3)
∆1⊗∆2⊗∆3−−−−−−−−→D(a11, a21, a31)⊗D(a12, a22, a32)⊗D(a13, a23, a33)(2.6)

≃D(a11, a12, a13)⊗D(a21, a22, a23)⊗D(a31, a32, a33)

m1⊗m2⊗m3−−−−−−−−→D(µ1, µ2, µ3),

where ∆i : D(a1i + a2i + a3i) → D(a1i, a2i, a3i) is the indicated component of twofold
comultiplication of the Hopf algebra D, the isomorphism permutes tensor factors, and mi:
D(ai1, ai2, ai3) → D(ai1 + ai2 + ai3) is the indicated component of twofold multiplication in
the algebra D.

(2) Define the map of G-modules

πS : D(α) → Kµ

as the composition

πS : D(α)
ϕS−→ D(µ)

πµ−→ Kµ.

We note that if in the previous definition the matrix A of the tableau S is diagonal, then α = µ
and πS = πµ.

Example 2.7. Suppose

µ = (5, 4, 1), α = (3, 6, 1) and S =
1(2)2(3)

12(3)

3

∈ RSSTα(µ).

Then the matrix A of the tableau S is

A =

2 3 0
1 3 0
0 0 1

 .

With the notation of Definition 2.6(1) we have the comultiplication maps

∆1 : D(3) → D(2, 1, 0),

∆2 : D(6) → D(3, 3, 0),

∆3 : D(1) → D(0, 0, 1).

Consider the map

ϕS : D(α) → D(µ)

and the element

x = 12(2) ⊗ 12(5) ⊗ 3 ∈ D(α).
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According to Definition 2.6(1) we have

∆1(12
(2)) = 12⊗ 2 + 2(2) ⊗ 1,

∆2(12
(5)) = 12(2) ⊗ 2(3) + 2(3) ⊗ 12(2),

∆3(3) = 3.

Hence the image of x under the map ϕS : D(3, 6, 1) → D(5, 4, 1) is equal to

ϕS(x) =
(
1+1
1

)(
1+2
1

)(
1+3
1

)
1(2)2(3) ⊗ 2(4) ⊗ 3

+
((

1+3
1

)(
1+2
1

)
+
(
2+2
2

))
12(4) ⊗ 12(3) ⊗ 3 +

(
2+3
2

)(
1+1
1

)
2(5) ⊗ 1(2)2(2) ⊗ 3.

The binomial coefficients come from the multiplication in the divided power algebra D.

Similarly to Definition 2.6(1) we have a map for exterior powers in place of divided powers.

Definition 2.8. Suppose µ = (µ1, µ2, µ3) ∈ Λ+(3, r), α = (α1, α2, α3) ∈ Λ(3, r) and S is a row
semistandard tableau of shape µ and weight α. Let A = (αij) be the matrix of S. Define a map of
G-modules

ψS : Λ(α) → Λ(µ)

as the following composition

Λ(α1, α2, α3)
∆1⊗∆2⊗∆3−−−−−−−−→Λ(a11, a21, a31)⊗ Λ(a12, a22, a32)⊗ Λ(a13, a23, a33)(2.7)

≃Λ(a11, a12, a13)⊗ Λ(a21, a22, a23)⊗ Λ(a31, a32, a33)

m1⊗m2⊗m3−−−−−−−−→Λ(µ1, µ2, µ3),

where ∆i is the indicated component of threefold comultiplication of the exterior algebra Λ, the
isomorphism permutes tensor factors, andmi is the indicated component of threefold multiplication
in the exterior algebra Λ.

From [1, Section 2, eq. (11)] we know the following for the maps πS : D(α) → Kµ of Definition
2.6.

Proposition 2.9. A basis of the vector space HomG(D(α),Kµ) is the set

(2.8) {πS : S ∈ SSTα(µ)}.

Remark 2.10. It is well known that for every α ∈ Λ(N, r), the G-module D(α) is cyclic and a
generator is the element

(2.9) eα := 1(α1) ⊗ 2(α2) ⊗ · · · ⊗N (αN ).

Hence the map πS : D(α) → Kµ of Definition 2.6 is determined by the image πS(e
α) of eα.

2.6. The functor Ω. Let us recall that there is an algebra involution on the ring of symmetric
functions that sends the Schur function sµ to sµ′ for every partition µ [9, 6.2]. In terms of represen-
tations, we recall from [1, p. 189] that, since the characteristic of K is zero, there is an involutory
natural equivalence Ω from the category of polynomial representations of G of degree r, where
N ≥ r, to itself that has the following properties.

(1) Ω(D(α)) = Λ(α) for all α ∈ Λ(N, r) and Ω(Kµ) = Lµ for every µ ∈ Λ+(N, r). More
generally, if µ(1) ∈ Λ+(N, r1), . . . , µ(q) ∈ Λ+(N, rq) are partitions such that r1+· · ·+rq = r,
then

Ω(Kµ(1) ⊗ · · · ⊗Kµ(q)) = Lµ(1) ⊗ · · · ⊗ Lµ(q).
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(2) The functor Ω preserves the comultiplication and multiplication maps of the Hopf algebras
D and Λ.

To be precise, this means that for all (α1, . . . , αN ) ∈ Λ(N, r) and all s the images under
Ω of the maps

1⊗ · · · ⊗∆D ⊗ · · · ⊗ 1 : D(α1, . . . , αs, . . . , αN ) → D(α1, . . . , α
′
s, α

′′
s . . . , αN ),

1⊗ · · · ⊗ ηD ⊗ · · · ⊗ 1 : D(α1, . . . , αs, αs+1 . . . , αN ) → D(α1, . . . , αs + αs+1 . . . , αN )

are the maps

1⊗ · · · ⊗∆Λ ⊗ · · · ⊗ 1 : Λ(α1, . . . , αs, . . . , αN ) → Λ(α1, . . . , α
′
s, α

′′
s . . . , αN ),

1⊗ · · · ⊗ ηΛ ⊗ · · · ⊗ 1 : Λ(α1, . . . , αs, αs+1 . . . , αN ) → Λ(α1, . . . , αs + αs+1 . . . , αN )

respectively. Here, αs = α′
s + α′′

s and ∆D : Dαs → Dα′
s
⊗ Dα′′

s
and ηD : Dαs ⊗ Dαs+1 →

Dαs+αs+1 are the indicated components of the comultiplication and multiplication maps of

the divided power algebra D respectively. Likewise, ∆Λ : Λαs → Λα′
s ⊗ Λα′′

s and ηΛ : Λαs ⊗
Λαs+1 → Λαs+αs+1 are the indicated components of the comultiplication and multiplication
maps of the exterior algebra Λ respectively.

(3) Ω(τs,D) = (−1)αsαs+1τs,Λ for all α = (α1, . . . , αN ) ∈ Λ(N, r) and all s, where τs,D : D(α) →
D(α) (respectively, τs,Λ : Λ(α) → Λ(α)) is the map that interchanges the factors Dαs and
Dαs+1 (respectively, Λαs and Λαs+1) and is the identity on the rest.

(4) The functor Ω is exact.

3. A result for Weyl modules

Throughout this section, λ will be the partition

λ = (n, n− 1, n− 1).

3.1. The maps γ1 and γ2.

Definition 3.1. Define γ1, γ2 ∈ HomG(D(λ), D(λ)) by

γ1 := ϕS(1) + (−1)nϕS(2)

γ2 := ϕS(1) + (−1)nϕS(3) + (−1)nϕS(4),

where the tableaux S(i) ∈ RSSTλ(λ) are the following

S(1) :=
1(n)

2(n−1)

3(n−1)

, S(2) :=
12(n−1)

1(n−1)

3(n−1)

, S(3) :=
1(n)

3(n−1)

2(n−1)

, S(4) :=
23(n−1)

12(n−2)

1(n−1)

.

Remark 3.2. Concerning the map γ1 defined above, we observe that, according to Definition 2.6,
ϕS(1) : D(λ) → D(λ) is the identity map and ϕS(2) : D(λ) → D(λ) is the composition

Dn ⊗Dn−1 ⊗Dn−1
∆⊗1⊗1−−−−−→ D1 ⊗Dn−1 ⊗Dn−1 ⊗Dn−1

1⊗τ⊗1−−−−→ D1 ⊗Dn−1 ⊗Dn−1 ⊗Dn−1

η⊗1⊗1−−−−→ Dn ⊗Dn−1 ⊗Dn−1,

where ∆ : Dn → D1 ⊗ Dn−1 (respectively, η : D1 ⊗ Dn−1 → Dn) is the indicated component of
the comultiplication map (respectively, multiplication map) of the divided power algebra D, and
τ : Dn−1 ⊗Dn−1 → Dn−1 ⊗Dn−1 is the defined by τ(x⊗ y) = y ⊗ x, for x, y ∈ Dn−1.

Recall from eq. (2.9) the notation eλ = 1(n) ⊗ 2(n−1) ⊗ 3(n−1).
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Lemma 3.3. With the notation of Definition 3.1, let ϵ = (−1)n. Then

γ1(e
λ) = eλ + ϵ12(n−1) ⊗ 1(n−1) ⊗ 3(n−1),(3.1)

γ2(e
λ) = eλ + ϵ1(n) ⊗ 3(n−1) ⊗ 2(n−1) + ϵ23(n−1) ⊗ 12(n−2) ⊗ 1(n−1).(3.2)

Proof. Both equations follow from Definition 3.1 and Definition 2.6(1). □

The motivation for considering such maps will become clear in sections 5.1 and 5.2. Roughly
speaking, the images of these maps correspond to certain relations of the multilinear component
Lien(m) of the free LAnKe that are consequences of the generalized Jacobi identity.

We intend to prove the following result in the present section.

Theorem 3.4. Let N ≥ 3n− 2. Then, the cokernel of the map

γ1 + γ2 : D(λ)⊕D(λ) → D(λ)

is isomorphic to Kλ ⊕K(n+1,n−1,n−2) as G-modules.

3.2. The cokernel of the map γ1 : D(λ) → D(λ). For the proof of Theorem 3.4 we will need
to identify the cokernel of the map γ1 : D(λ) → D(λ). This may be done using a result from [11]
which we now recall.

Definition 3.5. [11, Defintion 5.1]

(1) Let βn−1 be the map of tensor product of exterior powers

βn−1 : Λ
n ⊗ Λn−1 → Λn ⊗ Λn−1

given by the composition

Λn ⊗ Λn−1 ∆⊗1−−−→ Λ1 ⊗ Λn−1 ⊗ Λn−1 τ−→ Λ1 ⊗ Λn−1 ⊗ Λn−1 η⊗1−−→ Λn ⊗ Λn−1,

where ∆ : Λn → Λ1 ⊗ Λn−1 (respectively, η : Λ1 ⊗ Λn−1 → Λn) is the indicated component
of the comultiplication map (respectively, multiplication map) of the exterior algebra Λ,
and τ : Λn−1 ⊗ Λn−1 → Λn−1 ⊗ Λn−1 is the defined by τ(x⊗ y) = y ⊗ x, for x, y ∈ Λn−1.

(2) Let gn−1 be the map

gn−1 : Λ
n ⊗ Λn−1 → Λn ⊗ Λn−1, gn−1(x⊗ y) = x⊗ y − βn−1(x⊗ y).

To be precise, the maps βn−1 and gn−1 above are the special cases of the maps βk and γk defined
in [11, Definition 5.1] for a = n and b = k = n− 1 in the notation of loc. cit. Our gn−1 is denoted
γn−1 in loc. cit. The γn−1 of [11] should not be confused with the maps given in Definition 3.1 of
the present paper.

We recall the following special case of [11, Corollary 5.4]. Here L(n,n−1) denotes the Schur module
corresponding to the partition (n, n− 1) (see Section 2.2).

Lemma 3.6. Suppose N ≥ 2n− 1. Then Coker(gn−1) ≃ L(n,n−1).

Now we may identify the cokernel of the map γ1 : D(λ) → D(λ) of Definition 3.1.

Lemma 3.7. Suppose N ≥ 3n− 2. Then Coker(γ1) ≃ K(n,n−1) ⊗D(n− 1).

Proof. Consider the involutive functor Ω of Section 2.6. Using properties (1) - (3) of Ω, it follows
from Remark 3.2, that the image of the map

gn−1 ⊗ 1 : Λn ⊗ Λn−1 ⊗ Λn−1 → Λn ⊗ Λn−1 ⊗ Λn−1

under Ω is the map γ1 : D(n, n − 1, n − 1) → D(n, n − 1, n − 1). Since Ω is an exact functor, we
have

Coker γ1 ≃ Ω(Coker gn−1 ⊗ 1) ≃ Ω(L(n,n−1) ⊗ Λn−1) ≃ K(n,n−1) ⊗Dn−1,

where the middle isomorphism is due to Lemma 3.6. □
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Consider the map

γ1 + γ2 : D(λ)⊕D(λ) → D(λ)

in the statement of Theorem 3.4. An immediate consequence of Lemma 3.7 is the following.

Corollary 3.8. Suppose N ≥ 3n−2. Then the G-module Coker (γ1 + γ2) is a quotient of K(n,n−1)⊗
Dn−1.

We note without pursuing details that another proof of Lemma 3.7 may be obtained using [6,
Theorem 1.3] by applying first the ‘inverse’ Schur functor [10, pg. 56] and then the functor Ω.

3.3. The actions of the maps γ1 and γ2. The next four lemmas analyze the action of the map
γ1+γ2 : D(λ)⊕D(λ) → D(λ) on the irreducible summands of D(λ). By Corollary 3.8, we need only
consider those irreducible summands of D(λ) that are summands of the module K(n,n−1) ⊗Dn−1.

The first two lemmas concern the summands Kλ and K(n+1,n−1,n−2). We show in the last two
lemmas that the other possible irreducible summands have a combinatorial property that will be
utilized in Section 3.4 to prove that their multiplicities in Coker(γ1 + γ2) are in fact zero.

Multiplicities of the irreducibles Kλ and K(n+1,n−1,n−2) in Coker(γ1 + γ2).

Lemma 3.9. The multiplicity of Kλ in Coker (γ1 + γ2) is equal to one.

Proof. Let T0 = πλ(e
λ). First we show that the composition πλ ◦ γ1 is the zero map. Using eq.

(3.1) we have

πλ ◦ γ1(eλ) = T0 + (−1)nπλ(12
(n−1) ⊗ 1(n−1) ⊗ 3(n−1)).

Applying Lemma 2.3(2) to raise the 1’s from row 2 to row 1, we have

πλ(12
(n−1) ⊗ 1(n−1) ⊗ 3(n−1)) = (−1)(n)πλ(1

(n) ⊗ 2(n−1) ⊗ 3(n−1)) = (−1)n−1T0.

By substituting we obtain

πλ ◦ γ1(eλ) = T0 + (−1)2n−1T0 = 0.

Since eλ generates the G-module D(λ) (according to Remark 2.10) and πµ, γ1 are maps of G-
modules, the above equation yields πλ ◦ γ1 = 0.

Next we show that the composition πλ ◦ γ2 is the zero map. Using eq. (3.2) we have

(3.3) πλ ◦ γ2(eλ) = T0 + (−1)nπλ(1
(n) ⊗ 3(n−1) ⊗ 2(n−1)) + (−1)nπλ(23

(n−1) ⊗ 12(n−2) ⊗ 1(n−1)).

We apply to the second summand in the right hand side of eq. (3.3) Lemma 2.3(2) (to raise the
2’s from row 3 to row 2) obtaining

πλ(1
(n) ⊗ 3(n−1) ⊗ 2(n−1)) = (−1)n−1πλ(1

(n) ⊗ 2(n−1) ⊗ 3(n−1)) = (−1)n−1T0.

For the third summand in the right hand side of eq. (3.3) we have

πλ(23
(n−1) ⊗ 12(n−2) ⊗ 1(n−1)) = 0

because of Lemma 2.3(1) applied to rows 2 and 3 (where the number of 1’s is equal to 1+n−1 = n
which is greater than the length n− 1 of the second row.)

ThusKλ is not a summand of the image Im(γ1+γ2). Since the multiplicity ofKλ in the codomain
D(λ) of the map γ1 + γ2 : D(λ)⊕D(λ) → D(λ) is equal to 1, we conclude that the multiplicity of
Kλ in Coker (γ1 + γ2) is equal to one. □

Lemma 3.10. The multiplicity of K(n+1,n−1,n−2) in Coker (γ1 + γ2) is equal to one.
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Proof. Let µ = (n+ 1, n− 1, n− 2). There are exactly two semistandard tableaux of shape µ and
weight λ,

R0 :=
1(n)3

2(n−1)

3(n−2)

, R1 :=
1(n)2

2(n−2)3

3(n−2)

.

According to Definition 2.6 and Proposition 2.9, the corresponding projections are

πR0 : D(λ) → Kµ, e
λ 7→ πµ(1

(n)3⊗ 2(n−1) ⊗ 3(n−2)),

πR1 : D(λ) → Kµ, e
λ 7→ πµ(1

(n)2⊗ 2(n−2)3⊗ 3(n−2)).

We compute the maps πRi ◦ γ1, πRi ◦ γ2 ∈ HomG(D(λ),Kµ).

For notational convenience, let Ti := πRi(e
λ), i = 0, 1. (The present T0 should not be confused

with the T0 appearing in the proof of Lemma 3.9). Using eq. (3.1) of Lemma 3.3 we have

πR0 ◦ γ1(eλ) = T0 + (−1)nπµ(12
(n−1)3⊗ 1(n−1) ⊗ 3(n−2)).

We apply Lemma 2.3(2) to the second summand of the right hand side to obtain

(−1)nπµ(12
(n−1)3⊗ 1(n−1) ⊗ 3(n−2) = (−1)2n−1

(
πµ(1

(n)3⊗ 2(n−1) ⊗ 3(n−2))

+ πµ(1
(n)2⊗ 2(n−2)3⊗ 3(n−2))

)
= −T0 − T1.

Thus

πR0 ◦ γ1(eλ) = −T1
In a similar manner we have

πR1 ◦ γ1(eλ) = T1 + (−1)n
(
2
1

)
πµ(1

(2)2(n−1) ⊗ 1(n−2)3⊗ 3(n−2))

= T1 + (−1)2n−2
(
2
1

)
T1

= 3T1.

Since eλ generates the G-module D(λ), we conclude from the above that the restrictions of the
maps πR0 , πR1 ∈ HomG(D(λ),Kµ) to the image Im(γ1) ⊆ D(λ) are linearly dependent.

We show below that the restrictions of πR0 , πR1 to the image Im(γ2) ⊆ D(λ) are both zero.
This implies that the restrictions of πR0 , πR1 to Im(γ1 + γ2) are linearly dependent. By the above
computation, these restrictions are nonzero since T1 ̸= 0. Thus the multiplicity of Kµ in Im(γ1+γ2)
is equal to 1. Finally, the multiplicity of Kµ in Coker(γ1 + γ2) is equal to 2− 1 = 1.

It remains to be shown that the restrictions of πR0 , πR1 to the image Im(γ2) ⊆ D(λ) are both
zero. To this end, we first show the identity

(3.4) πµ(123
(n−1) ⊗ 12(n−2) ⊗ 1(n−2)) = (−1)n−1(T0 + T1).

The idea is to raise all the 1’s to the first row and all the 2’s to the first two rows. This will be
done applying Lemma 2.3(2) several times. We start by applying 2.3(2) to rows 2 and 3,

πµ(123
(n−1) ⊗ 12(n−2) ⊗ 1(n−2)) = (−1)n−2πµ(123

(n−1) ⊗ 1(n−1) ⊗ 2(n−2)).

Now we apply the same Lemma to rows 1 and 2

(−1)n−2πµ(123
(n−1)⊗1(n−1)⊗2(n−2)) = −πµ(1(n)2⊗3(n−1)⊗2(n−2))−πµ(1(n)3⊗23(n−2)⊗2(n−2)).

W apply Lemma 2.3(2) to each summand in the right hand side to rows 2 and 3 (to raise the 2’s
from the third row to the second) and we obtain

(−1)n−2πµ(123
(n−1) ⊗ 1(n−1) ⊗ 2(n−2)) = (−1)n−1(T0 + T1).
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Thus we have show eq. (3.4).
Now using (3.2) we obtain

πR0 ◦ γ2(eλ) = T0 + (−1)nπµ(1
(n)2⊗ 3(n−1) ⊗ 2(n−2))

+ (−1)nπµ(123
(n−1) ⊗ 12(n−2) ⊗ 1(n−2))

= T0 + (−1)n+n−2T1 + (−1)n+n−1(T0 + T1)

= 0,

where in the second equality we used once again Lemma 2.3(2) and (3.4).
By a similar computation, we have

πR1 ◦ γ2(eλ) = T1 + (−1)nπµ(1
(n)3⊗ 23(n−2) ⊗ 2(n−2))

+ (−1)n
(
πµ(123

(n−1) ⊗ 12(n−2) ⊗ 1(n−2))

+
(
2
1

)2
πµ(2

(2)3(n−1) ⊗ 1(2)2(n−3) ⊗ 1(n−2))
)

= T1 + (−1)n+n−2T0 + (−1)n+n−1(T0 + T1 +
(
2
1

)2
0)

= 0,

where we used πµ(2
(2)3(n−1) ⊗ 1(2)2(n−3) ⊗ 1(n−2)) = 0 according to Lemma 2.3(1) applied to rows

2 and 3. □

Two combinatorial lemmas. The next two lemmas concern a certain combinatorial property of
irreducible summands of the tensor product K(n,n−1)⊗Dn−1 under the actions of the maps γ1 and
γ2.

We need some notation. Let Par(K(n,n−1) ⊗Dn−1) be the subset of Λ(N, 3n − 2) consisting of
the partitions µ such that Kµ is a summand of K(n,n−1) ⊗Dn−1. By Pieri’s rule, for example see
[14, Corollary 2.3.5], we have that Par(K(n,n−1) ⊗Dn−1) consists of those partitions µ that are of
the form

(3.5) µ = (n+ c1, n− 1 + c2, c3),

for some nonnegative integers c1, c2, c3 satisfying c1 + c2 + c3 = n− 1 and c2 ∈ {0, 1}.
Let us fix a partition µ = (n+ c1, n− 1 + c2, n− 1− c1 − c2) as in (3.5). One easily verifies that

for each i = 0, . . . , c1, there is a unique semistandard tableau Ui ∈ SSTλ(µ) such that the number
of 2’s in the first row is equal to i, and moreover

SSTλ(µ) = {U0, U1, . . . , Uc1}.

We have

(3.6) Ui =
1(n)2(i)3(c1−i)

2(n−1−i)3(c2+i)

3(n−1−c1−c2).

Let

Ti := πµ(e
Ui) ∈ Kµ, i = 0, . . . , c1.

(These elements Ti should not be confused with T0, T1 appearing in the proofs of Lemma 3.9 and
Lemma 3.10 ). Since SSTλ(µ) = {U0, U1, . . . , Uc1}, we know from Theorem 2.1 that the set

{T0, T1, . . . , Tc1}

is a basis of the Weyl module Kµ.
The next lemma concerns the action of γ1 on Kµ.
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Lemma 3.11. Let µ ∈ Par(K(n,n−1) ⊗ Dn−1). Then for every semistandard Ui ∈ SSTλ(µ) , the

coefficient of T0 = πµ(e
U0) ∈ Kµ in the expression of πUi ◦ γ1(eλ) ∈ Kµ as a linear combination of

the basis elements T0, T1, . . . , Tc1 is equal to 0.

Proof. Let µ = (n+ c1, n− 1 + c2, n− 1− c1 − c2) according to (3.5). For notational convenience,
let c = c1 + c2.

We compute πUi ◦ γ1(eλ) as a linear combination of the basis elements T0, T1, . . . , Tc1 of Kµ.
First, using eq. (3.1) and the definition of the map πUi given in Definition 2.6 we have

πUi ◦ γ1(eλ) = πUi(e
λ) + (−1)nπUi(12

(n−1) ⊗ 1n−1 ⊗ 3n−1)(3.7)

= πUi(e
λ) + (−1)nπµ(11

(i)2(n−1)3(c1−i) ⊗ 1(n−1−i)3(c2+i) ⊗ 3(n−1−c))

= Ti + (−1)n
(
i+1
1

)
πµ(1

(i+1)2(n−1)3(c1−i) ⊗ 1(n−1−i)3(c2+i) ⊗ 3(n−1−c)),

where the binomial coefficient
(
i+1
1

)
comes from the multiplication 11(i) =

(
i+1
1

)
1(i+1) in the divided

power algebra D. Next we apply Lemma 2.3(2) to rows 1 and 2 of

X := πµ(1
(i+1)2(n−1)3(c1−i) ⊗ 1(n−1−i)3(c2+i) ⊗ 3(n−1−c))

to obtain

X = (−1)n−1−i
(
πµ(1

(n)2(i)3(c1−i) ⊗ 2(n−1−i)3(c2+i) ⊗ 3(n−1−c))

+
(
c2+i+1

1

)
πµ(1

(n)2(i+1)3(c1−i−1) ⊗ 2(n−2−i)3(c2+i−1) ⊗ 3(n−1−c)

+ · · ·

+
(
c1+c2
c1−i

)
πµ(1

(n)2(c1) ⊗ 2(n−1−c1)3(c2+c1) ⊗ 3(n−1−c))
)
.

Thus we have
X = (−1)n−1−i

(
Ti +

(
c2+i+1

1

)
Ti+1 + · · ·+

(
c1+c2
c1−i

)
Tc1

)
and substituting this in eq. (3.7) we obtain

(3.8) πUi ◦ γ1(eλ) = Ti + (−1)i+1
(
i+1
1

)(
Ti +

(
c2+i+1

1

)
Ti+1 + · · ·+

(
c1+c2
c1−i

)
Tc1

)
.

Now we see that if i > 0, then the coefficient of T0 in the right hand side of eq. (3.8) is equal
to 0. Also, if i = 0, then the coefficient of T0 in the right hand side of eq. (3.8) is equal to

1 + (−1)
(
1
1

)
= 0. □

We keep the previous notation, namely

• we have a partition µ ∈ Par(K(n,n−1))⊗Dn−1),
• we have the semistandard tableaux Ui ∈ SSTλ(µ), i = 0, 1, . . . , c1, given by eq. (3.6),
• and we define Ti := πµ(Ui), i = 0, 1, . . . , c1, which form a basis of the Weyl module Kµ.

The next lemma concerns the action of γ2 on Kµ.

Lemma 3.12. Let µ ∈ Par(K(n,n−1) ⊗ Dn−1) such that µ ̸= λ, (n + 1, n − 1, n − 2). Then the

coefficient of T0 ∈ Kµ in the expression of πU0◦γ2(eλ) ∈ Kµ as a linear combination of semistandard
basis elements is nonzero.

Proof. We know that µ is of the form

µ = (n+ c1, n− 1 + c2, n− 1− c1 − c2)

for some nonnegative integers c1, c2, c3 satisfying c1 + c2 + c3 = n− 1 and c2 ∈ {0, 1} according to
(3.5). For notational convenience, let

c = c1 + c2.
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We want to compute πU0 ◦ γ2(eλ) as a linear combination of the basis elements Ti of Kµ and in
particular we want to determine the coefficient in this linear combination of the basis element T0.

Using eq. (3.2) we have

πU0 ◦ γ2(eλ) =πU0(e
λ)(3.9)

+ (−1)nπU0(1
(n) ⊗ 3(n−1) ⊗ 2(n−1))

+ (−1)nπU0(23
(n−1) ⊗ 12(n−2) ⊗ 1(n−1)).

Applying Definition 2.6 for

S = U0 =
1(n)3(c1)

2(n−1)3(c2)

3(n−1−c)

we obtain

πU0(e
λ) = T0,(3.10)

πU0(1
(n) ⊗ 3(n−1) ⊗ 2(n−1)) = πµ(1

(n)2(c1) ⊗ 2(c2)3(n−1) ⊗ 2(n−1−c)),(3.11)

πU0(23
(n−1) ⊗ 12(n−2) ⊗ 1(n−1)) =

(
1+c2
1

)
πµ(1

(c1)23(n−1) ⊗ 1(1+c2)2(n−2) ⊗ 1(n−1−c)).(3.12)

Substituting eqs. (3.10) - (3.12) in eq. (3.9) we have

πU0 ◦ γ2(eλ) = T0 + (−1)nX + (−1)n
(
1+c2
1

)
Y,(3.13)

where

X : = πµ(1
(n)2(c1) ⊗ 2(c2)3(n−1) ⊗ 2(n−1−c)),

Y : = πµ(1
(c1)23(n−1) ⊗ 1(1+c2)2(n−2) ⊗ 1(n−1−c))

We want to compute the X and Y as linear combinations of the Ti. To this end we use Lemma 2.3
repeatedly.

Raising the 2’s from row 3 of X to row 2 according to Lemma 2.3(2), we obtain

X = (−1)n−1−cπµ(1
(n)2(c1) ⊗ 2(n−1−c1)3(c) ⊗ 3(n−1−c))

and therefore

(3.14) X = (−1)n−1−cπµ(e
Uc1 ) = (−1)n−1−cTc1 .

For Y we first observe that c ≥ 1 because if c = 0, then c1 = c2 = 0 and thus µ = (n, n−1, n−1) =
λ, which contradicts the hypothesis µ ̸= λ of the Lemma. Therefore n− 2 ≥ n− 1− c and we may
apply Lemma 2.3(2) to raise the 1’s from row 3 of Y to row 2 to obtain

(3.15) Y = (−1)n−1−cY1,

where

(3.16) Y1 := πµ(1
(c1)23(n−1) ⊗ 1(n−c1)2(c−1) ⊗ 2(n−1−c)).

In order to continue the computation of Y1 as a linear combination of the Ti we distinguish two
cases.

Case 1. Suppose c1 ≥ 1.
Raising the 1’s from row 2 of Y1 to row 1 yields

Y1 = (−1)n−c1(Y2 +
(
c
1

)
Y3),
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where

Y2 := πµ(1
(n)23(c1−1) ⊗ 2(c−1)3(n−c1) ⊗ 2(n−1−c)),

Y3 := πµ(1
(n)3(c1) ⊗ 2(c)3(n−c1−1) ⊗ 2(n−1−c)).

Raising the 2’s from row 3 of Y2 to row 2 yields

Y2 = (−1)n−1−cπµ(1
(n)23(c1−1) ⊗ 2(n−2)3(c2+1) ⊗ 3(n−1−c)) = (−1)n−1−cT1

and likewise raising the 2’s from row 3 of Y3 yields

Y3 = (−1)n−1−cπµ(1
(n)3(c1) ⊗ 2(n−1)3(c2) ⊗ 3(n−1−c)) = (−1)n−1−cT0.

By substituting the Yi in eq. (3.15) and we find

Y = (−1)n−c1(T1 +
(
c
1

)
T0).

Substituting this and eq. (3.14) in eq. (3.13) we find the desired linear combination of semistandard
tableaux

(3.17) πU0 ◦ γ2(eλ) = T0 + (−1)c+1Tc1 + (−1)c1
(
1+c2
1

)
(T1 +

(
c
1

)
T0).

The coefficient of T0 in the right hand side of eq. (3.17) is equal to 1 + (−1)c1
(
1+c2
1

)(
c
1

)
. This is

clearly nonzero if c2 = 1. If c2 = 0, then the coefficient is equal to 1+(−1)c1c1. However, for c2 = 0
we have c1 ̸= 1 because µ ̸= (n+ 1, n− 1, n− 2) by hypothesis. Thus we see that the coefficient is
nonzero when c2 = 0. Remembering that c2 ∈ {0, 1} we have that the coefficient is nonzero in all
cases.

Case 2. Suppose c1 = 0.
In this case we have from eq. (3.16)

Y1 = πµ(23
(n−1) ⊗ 1(n)2(c−1) ⊗ 2(n−1−c))

and we compute similarly to case 1. By raising the 1’s from row 2 of Y1 to row 1 we get

Y1 = (−1)n
(
c
1

)
πµ(1

(n) ⊗ 2(c)3(n−1) ⊗ 2(n−1−c))

and by raising in the last term the 2’s from row 3 to row 2 we get

Y1 = (−1)c+1
(
c
1

)
T0.

Substituting this and eq. (3.14) in eq. (3.13) we find the desired linear combination of semistandard
tableaux

(3.18) πU0 ◦ γ2(eλ) = (1 + (−1)c2+1 +
(
1+c2
1

)(
c2
1

)
)T0.

If c2 = 1, the coefficient of T0 in the right hand side of eq. (3.18) is nonzero. We have c2 ̸= 0
because µ ̸= λ = (n, n − 1, n − 1) by hypothesis of the Lemma. Remembering that c2 ∈ {0, 1} we
have that the coefficient is nonzero in all cases. □

3.4. Proof of Theorem 3.4.

Proof. From Lemma 3.9 and Lemma 3.10 we know that the multiplicity of each ofKλ andK(n+1,n−1,n−2)

in the cokernel of the map γ1 + γ2 : D(λ)⊕D(λ) → D(λ) is equal to 1.
From Corollary 3.8 we know that every irreducible summand of Coker(γ1 + γ2) is a summand of

K(n,n−1) ⊗Dn−1.
Let us fix µ ∈ Par(K(n,n−1) ⊗Dn−1) such that µ ̸= λ and µ ̸= (n+1, n− 1, n− 2). We intend to

show that the multiplicity of Kµ in D(λ) is equal to the multiplicity of Kµ in Im(γ1) + Im(γ2), or
equivalently, that the vector spaces HomG(D(λ),Kµ) and HomG(Im(γ1) + Im(γ2),Kµ) have equal
dimensions.

We need to recall some notation.
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• Let SSTλ(µ) = {U0, U1, . . . , Uq}, where Ui is given by eq. (3.6). (With the notation of eq.
(3.6) we have q = c1.)

• For each Ui we have the corresponding projection πUi : D(λ) → Kµ, e
λ 7→ πµ(e

Ui), and we
know that the πU0 , . . . , πUq form a basis of HomG(D(λ),Kµ). So for the dimension of the
vector space HomG(D(λ),Kµ) we have dimHomG(D(λ),Kµ) = q + 1.

The exact sequence 0 → Im(γ1) → D(λ) → Coker(γ1) → 0 yields the exact sequence

(3.19) 0 → HomG(Coker(γ1),Kµ) → HomG(D(λ),Kµ) → HomG(Im(γ1),Kµ) → 0.

From Lemma 3.7 and Pieri’s rule, it follows that dimHomG(Coker(γ1),Kµ) = 1 and hence from
(3.19) we conclude that dimHomG(Im(γ1),Kµ) = q. We have that HomG(Im(γ1),Kµ) is generated
by the restrictions πUi

∣∣
Im (γ1)

, i = 0, . . . , q, of the maps πUi to Im(γ1). Consider the maps

πU0 ◦ γ1, πU1 ◦ γ1, . . . , πUq ◦ γ1 ∈ HomG(D(λ),Kµ).

It is clear that if a0πU0 ◦ γ1 + · · ·+ aqπUq ◦ γ1 = 0, where ai ∈ K, then

a0πU0

∣∣
Im (γ1)

+ · · ·+ aqπUq

∣∣
Im (γ1)

= 0.

Thus, for the subspace

W := span{πU0 ◦ γ1, πU1 ◦ γ1, . . . , πUq ◦ γ1}
of HomG(D(λ),Kµ) we have

dimW ≥ dimHomG(Im(γ1),Kµ) = q.

We claim that the subspace

span{πU0 ◦ γ2, πU0 ◦ γ1, πU1 ◦ γ1, . . . , πUq ◦ γ1}

of HomG(D(λ),Kµ) has dimension q+1. Indeed, to prove this it suffices to show that πU0 ◦γ2 /∈W.

Suppose πU0 ◦ γ2 = a0πU0 ◦ γ1 + · · ·+ aqπUq ◦ γ1, where ai ∈ K. Evaluating at eλ we have

πU0 ◦ γ2(eλ) = a0πU0 ◦ γ1(eλ) + · · ·+ aqπUq ◦ γ1(eλ).

According to Lemma 3.12, the coefficient of the semistandard basis element T0 = πµ(e
U0) in the

left hand side is nonzero, and according to Lemma 3.11 the coefficient of T0 in the right hand side
is zero. Thus πU0 ◦ γ2 /∈W as desired.

It follows from the above claim that there is a basis of HomG(D(λ),Kµ) consisting of a subset
of the elements

(3.20) πU0 ◦ γ2, πU0 ◦ γ1, πU1 ◦ γ1, . . . , πUq ◦ γ1.

Since every map in (3.20) factors through a subspace of Im(γ1) + Im(γ2), we conclude that the
multiplicity ofKµ in Im(γ1)+Im(γ2) ⊆ D(λ) is at least dimHomG(D(λ),Kµ). Thus this multiplicity
is equal to dimHomG(D(λ),Kµ). Consequently, the multiplicity of Kµ in Coker(γ1 + γ2) is equal
to zero. □

4. Main result for Weyl modules

Suppose n ≥ 2. Throughout this section, λ, µ and ν are the following partitions of 3n− 2

λ := (n, n− 1, n− 1),

µ := (n+ 1, n− 1, n− 2),

ν := (n, n, n− 2).
18



4.1. The map γ3.

Definition 4.1. Define γ3 ∈ HomG(D(ν), D(λ)) by

γ3 := ϕQ(1) + (−1)nϕQ(2),

where the tableaux Q(i) ∈ RSSTν(λ) are the following

Q(1) :=
1(n)

23(n−2)

2(n−1)

, Q(2) :=
2(n)

13(n−2)

1(n−1)

.

Lemma 4.2. We have

γ3(e
ν) = 1(n) ⊗ 23(n−2) ⊗ 2(n−1) + (−1)n2(n) ⊗ 13(n−2) ⊗ 1(n−1).(4.1)

Proof. This is clear from the previous definition and Definition 2.6(1). □

The reason for considering the map γ3 will become apparent in Section 5.1. Roughly speaking,
the image of γ3 corresponds to a particular relation of Lien(m), namely to relation (R5) of Lemma
5.4.

At the beginning of the proof of Lemma 3.10, we observed the following.

Remark 4.3. There are exactly two semistandard tableaux of shape µ and weight λ,

R0 :=
1(n)3

2(n−1)

3(n−2)

, R1 :=
1(n)2

2(n−2)3

3(n−2)

.

According to Section 2.3, the corresponding projections are

πR0 : D(λ) → Kµ, e
λ 7→ πµ(1

(n)3⊗ 2(n−1) ⊗ 3(n−2)),

πR1 : D(λ) → Kµ, e
λ 7→ πµ(1

(n)2⊗ 2(n−2)3⊗ 3(n−2)).

Lemma 4.4. With the above notation, each of the following compositions of G-maps is the zero
map

(1) D(ν)
γ3−→ D(λ)

πλ−→ Kλ,

(2) D(ν)
γ3−→ D(λ)

πR0−−→ Kµ,

(3) D(ν)
γ3−→ D(λ)

πR1−−→ Kµ.

Proof. (1) Using eq. (4.1) we have

πλ ◦ γ3(eν) = πλ
(
1(n) ⊗ 23(n−2) ⊗ 2(n−1)

)
+ (−1)nπλ

(
2(n) ⊗ 13(n−2) ⊗ 1(n−1)

)
.

The number of 2’s in rows 2 and 3 of πλ
(
1(n) ⊗ 23(n−2) ⊗ 2(n−1)

)
is equal to 1 + n− 1 = n and the

length of the second part of the partition λ is equal to n − 1. Since n − 1 < n, we conclude from
Lemma 2.3(1) that

πλ
(
1(n) ⊗ 23(n−2) ⊗ 2(n−1)

)
= 0.

In a similar manner we also have

πλ
(
2(n) ⊗ 13(n−2) ⊗ 1(n−1)

)
= 0.

Hence πλ ◦ γ3(eν) = 0. Since eν generates D(ν) as a G-module (Remark 2.10) and πλ ◦ γ3 is a map
of G-modules, we conclude that πλ ◦ γ3 = 0.

(2) Using eq. (4.1) we have

(4.2) πR0 ◦ γ3(eν) = πR0

(
1(n) ⊗ 23(n−2) ⊗ 2(n−1)

)
+ (−1)nπR0

(
2(n) ⊗ 13(n−2) ⊗ 1(n−1)

)
.
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We have πR0 = πµ ◦ ϕR0 according to Definition 2.6(2).
We compute the first summand in the right hand side of eq. (4.2). Using the definition of ϕR0

(i.e. Definition 2.6(1)), we obtain

πR0

(
1(n) ⊗ 23(n−2) ⊗ 2(n−1)

)
= πµ

(
1(n)2⊗ 23(n−2) ⊗ 2(n−2)

)
.

Applying Lemma 2.3(2) to the right hand side of the above equation for rows 2 and 3, we obtain

πµ
(
1(n)2⊗ 23(n−2) ⊗ 2(n−2)

)
= (−1)(n−2)πµ

(
1(n)2⊗ 2(n−1) ⊗ 3(n−2)

)
.

Hence

(4.3) πR0

(
1(n) ⊗ 23(n−2) ⊗ 2(n−1)

)
= (−1)(n−2)πµ

(
1(n)2⊗ 2(n−1) ⊗ 3(n−2)

)
We compute now the second summand in the right hand side of eq. (4.2). The definition of ϕR0

yields

πR0

(
2(n) ⊗ 13(n−2) ⊗ 1(n−1)

)
= πµ

(
12(n) ⊗ 13(n−2) ⊗ 1(n−2)

)
.

Applying Lemma 2.3(2) to the right hand side of the above equation for rows 2 and 3, we obtain

πR0

(
2(n) ⊗ 13(n−2) ⊗ 1(n−1)

)
= (−1)n−2πµ

(
12(n) ⊗ 1(n−1) ⊗ 3(n−2)

)
.

Applying the same lemma to the right hand side of the above equation for rows 1 and 2 yields

(−1)n−2πµ
(
12(n) ⊗ 1(n−1) ⊗ 3(n−2)

)
= (−1)n−2(−1)n−1πµ

(
1(n)2⊗ 2(n−1) ⊗ 3(n−2)

)
.

Hence

(4.4) πR0

(
2(n) ⊗ 13(n−2) ⊗ 1(n−1)

)
= −πµ

(
1(n)2⊗ 2(n−1) ⊗ 3(n−2)

)
.

Now we substitute (4.3) and (4.4) into (4.2) to obtain

πR0 ◦ γ3(eν)

= (−1)(n−2)πµ
(
1(n)2⊗ 2(n−1) ⊗ 3(n−2)

)
− (−1)nπµ

(
1(n)2⊗ 2(n−1) ⊗ 3(n−2)

)
= 0.

Hence πR0 ◦ γ3 = 0.
(3) This computation is similar to (2) but has two extra steps. Using eq. (4.1) we have

(4.5) πR1 ◦ γ3(eν) = πR1

(
1(n) ⊗ 23(n−2) ⊗ 2(n−1)

)
+ (−1)nπR1

(
2(n) ⊗ 13(n−2) ⊗ 1(n−1)

)
.

We compute the first summand in the right hand side of eq. (4.5). Using the definition of ϕR1 ,
see (2.6), we obtain

πR1

(
1(n) ⊗ 23(n−2) ⊗ 2(n−1)

)
=πµ

(
1(n)2⊗ 23(n−2) ⊗ 2(n−2)

)
(4.6)

+
(
2
1

)
πµ

(
1(n)3⊗ 2(2)3(n−3) ⊗ 2(n−2)

)
.

Applying Lemma 2.3(2) to πµ
(
1(n)2⊗ 23(n−2) ⊗ 2(n−2)

)
for rows 2 and 3, we have

πµ
(
1(n)2⊗ 23(n−2) ⊗ 2(n−2)

)
= (−1)n−2πµ

(
1(n)2⊗ 2(n−1) ⊗ 3(n−2)

)
.

The number of 2’s in rows 2 and 3 of πµ
(
1(n)3⊗ 2(2)3(n−3) ⊗ 2(n−2)

)
is equal to 2 + n− 2 = n and

the length of the second part of the partition µ is equal to n − 1. Since n − 1 < n, we conclude
from Lemma 2.3(1) that

πµ
(
1(n)3⊗ 2(2)3(n−3) ⊗ 2(n−2)

)
= 0.

Substituting in (4.6) we get

(4.7) πR1

(
1(n) ⊗ 23(n−2) ⊗ 2(n−1)

)
= (−1)n−2πµ

(
1(n)2⊗ 2(n−1) ⊗ 3(n−2)

)
.
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Now we compute the second summand in the right hand side of eq. (4.5). The definition of ϕR1

yields

πR1

(
2(n) ⊗ 13(n−2) ⊗ 1(n−1)

)
=πµ

(
12(n) ⊗ 13(n−2) ⊗ 1(n−2)

)
(4.8)

+
(
2
1

)
πµ

(
2(n)3⊗ 1(2)3(n−3) ⊗ 1(n−2)

)
.

Applying Lemma 2.3(2) to πµ
(
12(n) ⊗ 13(n−2) ⊗ 1(n−2)

)
for rows 2 and 3, we have

πµ
(
12(n) ⊗ 13(n−2) ⊗ 1(n−2)

)
= (−1)n−2πµ

(
12(n) ⊗ 1(n−1) ⊗ 3(n−2)

)
and applying the same lemma to the resulting term πµ

(
12(n) ⊗ 1(n−1) ⊗ 3(n−2)

)
for rows 1 and 2,

we have
πµ

(
12(n) ⊗ 1(n−1) ⊗ 3(n−2)

)
= (−1)n−1πµ

(
1(n)2⊗ 2(n−1) ⊗ 3(n−2)

)
.

Hence substituting we obtain

πµ
(
12(n) ⊗ 13(n−2) ⊗ 1(n−2)

)
= (−1)n−2(−1)n−1πµ

(
1(n)2⊗ 2(n−1) ⊗ 3(n−2)

)
(4.9)

= −πµ
(
1(n)2⊗ 2(n−1) ⊗ 3(n−2)

)
.

The number of 1’s in rows 2 and 3 of πµ
(
2(n)3⊗ 1(2)3(n−3) ⊗ 1(n−2)

)
is equal to 2 + n− 2 = n and

the length of the second part of the partition µ is equal to n − 1. Since n − 1 < n, we conclude
from Lemma 2.3(1) that

(4.10) πµ
(
2(n)3⊗ 1(2)3(n−3) ⊗ 1(n−2)

)
= 0.

Now substituting (4.9) and (4.10) into (4.8) we get

(4.11) πR1

(
2(n) ⊗ 13(n−2) ⊗ 1(n−1)

)
= −πµ

(
1(n)2⊗ 2(n−1) ⊗ 3(n−2)

)
and substituting (4.7) and (4.11) into (4.5) we get

πR1 ◦ γ3(eν) = (−1)n−2πµ
(
1(n)2⊗ 2(n−1) ⊗ 3(n−2)

)
− (−1)nπµ

(
1(n)2⊗ 2(n−1) ⊗ 3(n−2)

)
= 0.

Hence πR1 ◦ γ3 = 0. □

4.2. Main result for Weyl modules. Recall that we have maps of G-modules

γi : D(λ) → D(λ) (i = 1, 2),

γ3 : D(ν) → D(λ)

given in Definition 3.1 and Definition 4.1 respectively. The main result of this paper for Weyl
modules is the following.

Theorem 4.5. Let N ≥ 3n− 2. Then, the cokernel of the map

γ1 + γ2 + γ3 : D(λ)⊕D(λ)⊕D(ν) → D(λ)

is isomorphic to Kλ ⊕Kµ as G-modules.

Proof. From Theorem 3.4 we know that the cokernel of the map

γ1 + γ2 : D(λ)⊕D(λ) → D(λ)

is isomorphic as a G-module to Kλ⊕Kµ. Hence if suffices to show that each of the irreducibles Kλ

and Kµ has multiplicity equal to zero in the image Im(γ3) of the map

γ3 : D(ν) → D(λ).
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We know that a basis of HomG(D(λ),Kλ) is the set {πλ}. Thus from Lemma 4.4(1) we conclude
that the multiplicity of Kλ in Im(γ3) is equal to zero.

We know from Remark 4.3 and Proposition 2.9 that a basis of HomG(D(λ),Kµ) is the set

{πR0 , πR1}.

Thus from Lemma 4.4(2), (3) we conclude that the multiplicity of Kµ in Im(γ3) is equal to zero. □

Remark 4.6. According to Theorem 3.4 and Theorem 4.5, the cokernels of the maps γ1 + γ2 :
D(λ)⊕D(λ) → D(λ) and γ1 + γ2 + γ3 : D(λ)⊕D(λ)⊕D(ν) → D(λ) are isomorphic G-modules.
This implies that Im(γ3) is contained in Im(γ1 + γ2)

5. LAnKes and Specht modules

Let m = 3n− 2 and n ≥ 2. The purpose of this section is to show how Theorem 1.2 follows from
Theorem 4.5. We will need a particular presentation of Lien(m) given in Lemma 5.10 below.

5.1. A presentation of Lien(m). First, we will describe a presentation of Lien(m) (see Lemma
5.3 below) in the spirit of Section 2.2 of [6]. We recall that an n-bracketed permutation on [m] is
an n-bracketed word on [m] such that each a ∈ [m] appears exactly once. The symmetric group
Sm acts naturally on n-bracketed permutations by replacing each i of the bracketed permutation
by σ(i).

Definition 5.1. Let W = Wn,3 be the vector space generated by all possible n-bracketed permu-
tations on [m] subject only to skew commutativity of the bracket given in Definition 1.1(1) (but
not to the generalized Jacobi identity (1.1)).

It is clear that W is an Sm-module.
Here the number of brackets is k = 3. Hence up to skew commutativity there are two types of

generators of W consisting of bracketed permutations

[[[x1, . . . , xn], y1, . . . , yn−1], z1, . . . , zn−1],(G1)

[[x1, . . . , xn], [y1, . . . , yn], z1, . . . , zn−2],(G2)

for all xi, yj , zk ∈ [m].

Lemma 5.2. The subspace of W consisting of the relations satisfied by the elements (G1) and
(G2) is generated by the following relations

(G1)− sgn(σ)[[[xσ(1), . . . , xσ(n)], y1, . . . , yn−1], z1, . . . , zn−1], σ ∈ Sn,(5.1)

(G1)− sgn(τ)[[[x1, . . . , xn], yτ(1), . . . , yτ(n−1)], z1, . . . , zn−1], τ ∈ Sn−1,(5.2)

(G1)− sgn(τ)[[[x1, . . . , xn], y1, . . . , yn−1], zτ(1), . . . , zτ(n−1)], τ ∈ Sn−1,(5.3)

and

(G2)− sgn(σ)[[xσ(1), . . . , xσ(n)], [y1, . . . , yn], z1, . . . , zn−2], σ ∈ Sn,(5.4)

(G2)− sgn(σ)[[x1, . . . , xn], [yσ(1), . . . , yσ(n)], z1, . . . , zn−2], σ ∈ Sn,(5.5)

(G2)− sgn(τ)[[x1, . . . , xn], [y1, . . . , yn], zτ(1), . . . , zτ(n−2)], τ ∈ Sn−2,(5.6)

(G2) + [[y1, . . . , yn], [x1, . . . , xn], z1, . . . , zn−2].(5.7)

Proof. This follows immediately from the definition of W since all relations in W are consequences
of the identities [x1, x2, . . . , xn] = sgn(σ)[xσ(1), xσ(2), . . . , xσ(n)] , where x1, . . . , xn ∈ [m] are distinct
elements and σ ∈ Sn. □
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Remarks on notation: (1) According to Definition 1.1, the vector space Lien(m) is a quotient
of W (by the subspace generated by relations given by the generalized Jacobi identity). We will
use the same symbol for a bracketed permutation in W and the corresponding coset in Lien(m)
if there is no danger of confusion. Thus, when considering elements of Lien(m), we may refer to
(G1) and (G2) as generators of Lien(m). (2) For a sequence x1, . . . , xq of elements of [m] and for
i ∈ {1, . . . , q}, we denote by x1, . . . , x̂i, . . . , xq the sequence obtained by omitting the term xi.

Lemma 5.3. Let span(R1, R2, R3) be the subspace of W spanned by the elements (R1), (R2), (R3)
defined as follows

(G1)−
n∑

i=1

(−1)i−1[[[xi, y1, . . . , yn−1], x1, . . . , x̂i, . . . , xn], z1, . . . , zn−1],(R1)

(G1)− [[[x1, . . . , xn], z1, . . . , zn−1], y1, . . . , yn−1](R2)

−
n−1∑
i=1

(−1)i−1[[x1, . . . , xn], [yi, z1, . . . , zn−1], y1, . . . , ŷi, . . . , yn−1],

(G2)−
n∑

i=1

(−1)i[[[y1, . . . , yn], xi, z1, . . . , zn−2], x1, . . . , x̂i, . . . , xn],(R3)

for all xi, yj , zk ∈ [m]. Then the Sm-modules Lien(m) and W/ span(R1, R2, R3) are isomorphic.

Proof. The relations among the generators (G1) and (G2) of Lien(m) are consequences of skew
commutativity of the bracket and the generalized Jacobi identity, cf. Definition 1.1. Up to skew
commutativity of the bracket, this identity may be applied in exactly two ways to a generator of
type (G1); we may exchange the y1, . . . , yn−1 with n − 1 of the x1, . . . , xn (keeping the zk fixed),
or we may exchange the z1, . . . , zn−1 with n − 1 of the [x1, . . . , xn], y1, . . . , yn−1. In the first case,
we obtain

(G1) =
n∑

i=1

[[x1, . . . , xi−1, [xi, y1, . . . , yn−1], xi+1, . . . , xn], z1, . . . , zn−1].

From this and skew commutativity of the bracket (we move the x1, . . . , xi−1 to the right of the
element [xi, y1, . . . , yn−1]), we obtain (R1). In the second case, we obtain (R2) in a similar manner.

Up to skew commutativity of the bracket, the generalized Jacobi identity may be applied in
exactly one way to a generator of type (G2), by exchanging the [y1, . . . , yn], z1, . . . , zn−2 with n− 1
of the x1, . . . , xn. Thus we obtain (R3). □

In the next lemma we prove two more relations of Lien(m).

Lemma 5.4. Define the elements of W

(G1)− [[[x1, . . . , xn], z1, . . . , zn−1], y1, . . . , yn−1](R4)

−
n−1∑
i=1

(−1)i−1
n∑

j=1

(−1)j [[[yi, z1, . . . , zn−1], xj , y1, . . . , ŷi, . . . , yn−1],

x1, . . . , x̂j , . . . , xn],
n∑

i=1

[[[x1, . . . , xn], yi, z1, . . . , zn−2], y1, . . . , ŷi, . . . , yn](R5)

+

n∑
i=1

[[[y1, . . . , yn], xi, z1, . . . , zn−2], x1, . . . , x̂i, . . . , xn],

for all xi, yj , zk ∈ [m]. The images of these in Lien(m) are equal to 0.
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Proof. Note that by skew commutativity of the bracket, every summand in the sum of (R2) of
Lemma 5.3 is up to sign a generator of type (G2). We substitute (R3) in (R2) to obtain (R4).

We have the element (R3) of Lemma 5.3 and the corresponding element obtained by exchanging
the x’s and y’s. By adding these and using skew commutativity of the bracket we obtain (R5). □

Definition 5.5. Let W (1) be the Sm-submodule of W generated by the elements (G1).

We note that the elements (R1), (R4) and (R5) of W involve only generators of type (G1).
Hence the subspace span(R1, R4, R5) spanned by these is contained in W (1). Also it is clear that
span(R1, R4, R5) is an Sm-submodule of W(1).

Definition 5.6. Let Lien(m) be the Sm-module W (1)/ span(R1, R4, R5).

Lemma 5.7. The inclusion map W (1) ⊆W induces a surjective map of Sm-modules

Lien(m) → Lien(m).

Proof. From Lemma 5.3 it follows that the image of (R1) in Lien(m) is equal to 0 and from Lemma
5.4 it follows that the images of (R4) and (R5) in Lien(m) are equal to 0. Hence the inclusion map
W (1) ⊆W induces a map W (1)/ span(R1, R4, R5) → Lien(m).

We know that Lien(m) is generated by the images of (G1) and (G2). Hence by Lemma 5.3(R3),
Lien(m) is generated by the images of (G1). So the map W (1)/ span(R1, R4, R5) → Lien(m) is
surjective. □

We will show now that the surjective map Lien(m) → Lien(m) of the previous lemma is an
isomorphism. For this we need a particular relation in Lien(m) (Lemma 5.9 below). For the proof
we will make use of a remark on the sign of permutations that follows.

Remark 5.8. Recall that for a finite sequence u1, . . . , uk of distinct positive integers, the inversion
number inv(u1, ..., uk) is the number of pairs (ui, uj) such that i < j and ui > uj . For a permutation

σ ∈ Sn we have sgn(σ) = (−1)inv(σ(1),...,σ(n)). Now let i ∈ {1, ..., n}. We may consider the inversion

number inv(σ(1), . . . , σ̂(i), . . . , σ(n)) of the sequence obtained from σ(1), . . . , σ(n) by deleting the
term σ(i). We have

(5.8) (−1)i(−1)inv(σ(1),...,σ̂(i),...,σ(n)) = (−1)σ(i) sgn(σ).

Proof. Working modulo 2 we have

sgn(σ) ≡ inv(σ(1), . . . , σ(n))

≡ inv(σ(i), σ(1), . . . , σ̂(i), . . . , σ(n)) + (i− 1)

≡ inv(σ(i), 1, . . . , σ̂(i), . . . , n) + inv(σ(1), . . . , σ̂(i), . . . , σ(n)) + (i− 1)

≡ inv(1, . . . , n) + (σ(i)− 1) + inv(σ(1), . . . , σ̂(i), . . . , σ(n)) + (i− 1)

≡ σ(i) + inv(σ(1), . . . , σ̂(i), . . . , σ(n)) + i.

In the second and fourth congruences we used the fact inv(u) ≡ inv(u′)+1 if the sequence u′ is ob-
tained from u by transposing two adjacent elements. In the third we used that inv(u1, u2, . . . , uk) ≡
inv(u1, v2, . . . , vk) + inv(u2, . . . , uk), where v2 < · · · < vk is the increasing sequence obtained from
u2, . . . , uk by rearranging the terms in increasing order. □
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Lemma 5.9. In W (1) we have the relations

n∑
i=1

(−1)i[[[y1, . . . , yn], xi, z1, . . . , zn−2], x1, . . . , x̂i, . . . , xn]

− sgn(σ)
n∑

i=1

(−1)i[[[y1, . . . , yn], xσ(i), z1, . . . , zn−2], xσ(1), . . . , x̂σ(i), . . . , xσ(n)],

where σ ∈ Sn. Thus we have the corresponding relations in Lien(m).

Proof. For i ∈ {1, . . . , n} we know from relation (5.3) that

[[[y1, . . . , yn], xi, z1, . . . , zn−2], x1, . . . , x̂i, . . . , xn]

is skew commutative in the x1, . . . , xi−1, xi+1, xn. Hence for every σ ∈ Sn we have

n∑
i=1

(−1)i[[[y1, . . . , yn], xσ(i), z1, . . . , zn−2], xσ(1), . . . , x̂σ(i), . . . , xσ(n)]

=
n∑

i=1

(−1)i(−1)inv(σ(1),...,σ̂(i),...,σ(n))[[[y1, . . . , yn], xσ(i), z1, . . . , zn−2], x1, . . . , x̂σ(i), . . . , xn]

(5.8)
=

n∑
i=1

(−1)σ(i) sgn(σ)[[[y1, . . . , yn], xσ(i), z1, . . . , zn−2], x1, . . . , x̂σ(i), . . . , xn].

The right hand side is equal to

sgn(σ)

n∑
i=1

(−1)σ(i)[[[y1, . . . , yn], xσ(i), z1, . . . , zn−2], x1, . . . , x̂σ(i), . . . , xn]

= sgn(σ)
n∑

i=1

(−1)i[[[y1, . . . , yn], xi, z1, . . . , zn−2], x1, . . . , x̂i, . . . , xn],

where in the last equality we have a rearrangement of the terms in the sum. The first result of the
lemma follows. The second follows from the first since Lien(m) is a quotient of W(1). □

The main result of the present subsection is the following.

Lemma 5.10. The inclusion map W (1) ⊆W induces an isomorphism of Sm-modules

Lien(m) → Lien(m).

Proof. From Lemma 5.7 we know that the inclusion map W (1) ⊆ W induces a surjective linear
map Lien(m) → Lien(m).

In the argument given below, we show that there exists a surjective linear map Lien(m) →
Lien(m). Since these spaces are finite dimensional, the surjective linear map Lien(m) → Lien(m)
is an isomorphism as desired.

Consider the map

Θ :W → Lien(m)

• that is the identity map on (G1), and
• sends a generator [[x1, . . . , xn], [y1, . . . , yn], z1, . . . , zn−2] of type (G2) to

(5.9)

n∑
i=1

(−1)i[[[y1, . . . , yn], xi, z1, . . . , zn−2], x1, . . . , x̂i, . . . , xn].
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We need to show that Θ is well defined, i.e. sends the relations of W to relations of Lien(m) .
Since Θ is the identity map on (G1), it is clear that the relations (5.1) - (5.3) are sent to the

corresponding relations of Lien(m).
Next we consider the relations (5.4) - (5.7) of W . From the definition of Θ, it follows that the

image of the relation (5.4) is equal to
n∑

i=1

(−1)i[[[y1, . . . , yn], xi, z1, . . . , zn−2], x1, . . . , x̂i, . . . , xn]

− sgn(σ)
n∑

i=1

(−1)i[[[y1, . . . , yn], xσ(i), z1, . . . , zn−2], xσ(1), . . . , x̂σ(i), . . . , xσ(n)].

By Lemma 5.9 this is equal to 0.
In order to show that relation (5.5) of W is mapped under Θ to a relation of Lien(m), it suffices

by the definition given in (5.9) to show the following identity in Lien(m)
n∑

i=1

(−1)i[[[y1, . . . , yn], xi, z1, . . . , zn−2], x1, . . . , x̂i, . . . , xn](5.10)

= sgn(σ)
n∑

i=1

(−1)i[[[yσ(1), . . . , yσ(n)], xi, z1, . . . , zn−2], x1, . . . , x̂i, . . . , xn]

for any permutation σ ∈ Sn. From relation (5.1) of W (1) applied to

[[[y1, . . . , yn], xi, z1, . . . , zn−2], x1, . . . , x̂i, . . . , xn]

we have

[[[y1, . . . , yn], xi, z1, . . . , zn−2], x1, . . . , x̂i, . . . , xn]

= sgn(σ)[[[yσ(1), . . . , yσ(n)], xi, z1, . . . , zn−2], x1, . . . , x̂i, . . . , xn].

Taking the alternating sum with respect to i = 1, . . . , n we obtain eq. (5.10).
Similarly to the previous case, in order to show that relation (5.6) of W is mapped under Θ to

a relation of Lien(m), it suffices to show the following identity in Lien(m)
n∑

i=1

(−1)i[[[y1, . . . , yn], xi, z1, . . . , zn−2], x1, . . . , x̂i, . . . , xn](5.11)

= sgn(τ)

n∑
i=1

(−1)i[[[y1, . . . , yn], xi, zτ(1), . . . , zτ(n−2)], x1, . . . , x̂i, . . . , xn]

for any permutation τ ∈ Sn−2. From relation (5.2) of W (1) applied to

[[[y1, . . . , yn], xi, z1, . . . , zn−2], x1, . . . , x̂i, . . . , xn]

we have

[[[y1, . . . , yn], xi, z1, . . . , zn−2], x1, . . . , x̂i, . . . , xn]

= sgn(τ)[[[y1, . . . , yn], xi, zτ(1), . . . , zτ(n−2)], x1, . . . , x̂i, . . . , xn],

where the element xi remains fixed. Hence (5.11) follows.
From the definition of Θ (see (5.9)), it follows that the image of the relation (5.7) is equal to the

relation (R5) of Lien(m).
Thus far we have shown that Θ :W → Lien(m) is a well defined map. Since Lien(m) is a quotient

of W (1) and the (G1) generate W (1), it is clear from the definition of Θ that Θ is surjective.
Finally, from the definition of Θ it is clear that the image under Θ
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• of (R1) of Lemma 5.3 is equal to (R1) in Lien(m),
• of (R2) of Lemma 5.3 is equal to (R4) in Lien(m), and
• of (R3) of Lemma 5.3 is equal to zero.

From Lemma 5.3 it follows that Θ induces a surjective linear map Lien(m) → Lien(m). The proof
is complete.

□

5.2. A presentation associated to the map γ1+ γ2+ γ3. For the remainder of this section, let
λ = (n, n− 1, n− 1), µ = (n+ 1, n− 1, n− 2) and ν = (n, n, n− 2).

Applying the functor Ω that we discussed in Section 2.6 to the map γ1+ γ2+ γ3 of Theorem 4.5,
we obtain a map G-modules

(5.12) Λ(λ)⊕ Λ(λ)⊕ Λ(ν)
Ω(γ1)+Ω(γ2)+Ω(γ3)−−−−−−−−−−−−→ Λ(λ).

From Definition 3.1, Definition 4.1, the definition of the maps ϕS and ψS in (2.6) and (2.7), and
the description of the functor Ω in Section 2.6 (especially item 3 that involves sign changes), it is
straightforward to verify that the maps Ω(γ1), Ω(γ2) and Ω(γ3) are as follows,

Ω(γ1) = 1Λ(λ) − ψS(2),

Ω(γ2) = 1Λ(λ) − ψS(3) + ψS(4),

Ω(γ3) = ψQ(1) + ψQ(2).

We will need to compute these maps on basis elements of Λ(λ) (in the cases of Ω(γ1) and Ω(γ2))
and on basis elements of Λ(ν) (in the case of Ω(γ3)).

Recall that we have the basis {e1, . . . , eN} of the natural G-module V . So let

w = x⊗ y ⊗ z ∈ Λ(λ),

where x = x1 · · ·xn ∈ Λn, y = y1 · · · yn−2 ∈ Λn−1, z ∈ Λn−1 and xi, yj ∈ {e1, . . . , eN}. For
i ∈ {1, . . . , n} we let

x[i] = x1 · · · x̂i · · ·xn ∈ Λn−1,

where x̂i means that xi is omitted. For j ∈ {1, . . . , n−1} we define y[j] ∈ Λn−2 in a similar manner.
It is easy to check using the definition of ψS in Definition 2.8 and the definition of the tableaux
S(i) in Definition 3.1, that

Ω(γ1)(w) = w −
n∑

i=1

(−1)i−1xiy ⊗ x[i]⊗ z,(5.13)

Ω(γ2)(w) = w − x⊗ z ⊗ y +
n−1∑
i=1

(−1)i−1
n∑

j=1

(−1)j−1yiz ⊗ xjy[i]⊗ x[j].(5.14)

Likewise, for
u = x′ ⊗ y′ ⊗ z′ ∈ Λ(ν),

where x′ = x1 · · ·xn ∈ Λn, y′ = y1 · · · yn ∈ Λn, z′ ∈ Λn−2 and xi, yi ∈ {e1, . . . , eN}, we have

(5.15) Ω(γ3)(u) =

n∑
i=1

x′ ⊗ yiz
′ ⊗ y′[i] +

n∑
i=1

y′ ⊗ xiz
′ ⊗ x′[i].

Next we want to apply the Schur functor. Suppose N ≥ m. Recall from [10], the Schur functor is
a functor f from the category of homogeneous polynomial representations of G of degree m to the
category of left Sm-modules. For M an object in the first category, f(M) is the weight subspace
Mα of M , where α = (1m, 0N−m) and for θ : M → Q a morphism in the first category, f(θ) is
the restriction Mα → Qα of θ. Let us denote the conjugate of a partition ξ by ξ′. The Specht
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module corresponding to a partition ξ of m will be denoted by Sξ and the space of column tabloids
corresponding to ξ will be denoted by M̃ ξ. See [9, Chapter 7.4] for the later. It is well known that

f is an exact functor such that f(Lξ) = Sξ′ and f(Λξ) = M̃ ξ′ for any partition ξ of m, where Lξ is
the Schur module introduced in Section 2.2.

Applying the Schur functor to the map Λ(λ)⊕ Λ(λ)⊕ Λ(ν)
Ω(γ1)+Ω(γ2)+Ω(γ3)−−−−−−−−−−−−→ Λ(λ) in (5.12) we

obtain a map of Sm-modules

(5.16) M̃λ′ ⊕ M̃λ′ ⊕ M̃ν′ f(Ω(γ1))+f(Ω(γ2))+f(Ω(γ3))−−−−−−−−−−−−−−−−−−→ M̃λ′
.

If an element x⊗ y ⊗ z of Λ(λ) is in M̃λ′
, we denote by x|y|z its image in the cokernel of (5.16).

Lemma 5.11. The cokernel of the map (5.16) has a presentation with generators x|y|z and relations

x|y|z =
n∑

i=1

(−1)i−1xiy|x[i]|z,(5.17)

x|y|z = x|z|y −
n−1∑
i=1

(−1)i−1
n∑

j=1

(−1)j−1yiz|xjy[i]|x[j],(5.18)

n∑
i=1

x′ ⊗ yiz
′ ⊗ y′[i] +

n∑
i=1

y′ ⊗ xiz
′ ⊗ x′[i] = 0,(5.19)

where

• x ∈ Λn and y, z ∈ Λn−1 run over all elements of the form x = x1 · · ·xn, y = y1 · · · yn−1, z =
z1 · · · zn−1 such that x1, . . . xn, y1, . . . , yn−1, z1, . . . , zn−1 is permutation of e1, e2, . . . , e3n−2,
and

• x′, y′ ∈ Λn and z′ ∈ Λn−2 run over all elements of the form x′ = x1 · · ·xn, y′ = y1 · · · yn, z′ =
z1 · · · zn−2 such that x1, . . . xn, y1, . . . , yn, z1, . . . , zn−2 is permutation of e1, e2, . . . , e3n−2.

Proof. This follows from the previous discussion and the equalities (5.13), (5.14), (5.15). □

5.3. Proof of Theorem 1.2.

Proof. Recall that we are assuming N ≥ m = 3n − 2 and n ≥ 2. Also we have the partitions
λ = (n, n− 1, n− 1), µ = (n+ 1, n− 1, n− 2) and ν = (n, n, n− 2).

Consider the map of Sm-modules

h : M̃λ′ → Lien(m),

x1 · · ·xn|y1 · · · yn−1|z1 · · · zn−1 7→ [[[x1, . . . , xn], y1, . . . , yn−1], z1, . . . , zn−1].

From Lemma 5.11 it follows that h induces a map of Sm-modules

(5.20) Coker(M̃λ′ ⊕ M̃λ′ ⊕ M̃ν′ f(Ω(γ1))+f(Ω(γ2))+f(Ω(γ3))−−−−−−−−−−−−−−−−−−→ M̃λ′
) → Lien(m)

which is an isomorphism, since h carries (5.17), (5.18) and (5.19) to (R1), (R4) and (R5) respectively.

Hence, from Theorem 4.5 it follows that Lien(m) ≃ Sλ′ ⊕ Sµ′
as Sm-modules. From Lemma 5.10

we have Lien(m) ≃ Sλ′ ⊕ Sµ′
as Sm-modules as desired. □

We have seen that the map in (5.20) is an isomorphism of Sm-modules. From this and Remark
4.6 it follows that we have another isomorphism of Sm-modules,

(5.21) Coker(M̃λ′ ⊕ M̃λ′ f(Ω(γ1))+f(Ω(γ2))−−−−−−−−−−−−→ M̃λ′
) → Lien(m).

Thus we obtain the following corollary.

Corollary 5.12. For m = 3n − 2 and n ≥ 2 we have Lien(m) ≃ W (1)/ span(R1, R4) as Sm-
modules.
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